Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia ; 64(8): 2056-2069, 2023 08.
Article in English | MEDLINE | ID: mdl-37243362

ABSTRACT

OBJECTIVE: Managing the progress of drug-resistant epilepsy patients implanted with the Responsive Neurostimulation (RNS) System requires the manual evaluation of hundreds of hours of intracranial recordings. The generation of these large amounts of data and the scarcity of experts' time for evaluation necessitate the development of automatic tools to detect intracranial electroencephalographic (iEEG) seizure patterns (iESPs) with expert-level accuracy. We developed an intelligent system for identifying the presence and onset time of iESPs in iEEG recordings from the RNS device. METHODS: An iEEG dataset from 24 patients (36 293 recordings) recorded by the RNS System was used for training and evaluating a neural network model (iESPnet). The model was trained to identify the probability of seizure onset at each sample point of the iEEG. The reliability of the net was assessed and compared to baseline methods, including detections made by the device. iESPnet performance was measured using balanced accuracy and the F1 score for iESP detection. The prediction time was assessed via both the error and the mean absolute error. The model was evaluated following a hold-one-out strategy, and then validated in a separate cohort of 26 patients from a different medical center. RESULTS: iESPnet detected the presence of an iESP with a mean accuracy value of 90% and an onset time prediction error of approximately 3.4 s. There was no relationship between electrode location and prediction outcome. Model outputs were well calibrated and unbiased by the RNS detections. Validation on a separate cohort further supported iESPnet applicability in real clinical scenarios. Importantly, RNS device detections were found to be less accurate and delayed in nonresponders; therefore, tools to improve the accuracy of seizure detection are critical for increasing therapeutic efficacy. SIGNIFICANCE: iESPnet is a reliable and accurate tool with the potential to alleviate the time-consuming manual inspection of iESPs and facilitate the evaluation of therapeutic response in RNS-implanted patients.


Subject(s)
Drug Resistant Epilepsy , Seizures , Humans , Reproducibility of Results , Seizures/diagnosis , Seizures/therapy , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/therapy , Electrocorticography
2.
Neuroimage ; 250: 118962, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35121181

ABSTRACT

There is great interest in identifying the neurophysiological underpinnings of speech production. Deep brain stimulation (DBS) surgery is unique in that it allows intracranial recordings from both cortical and subcortical regions in patients who are awake and speaking. The quality of these recordings, however, may be affected to various degrees by mechanical forces resulting from speech itself. Here we describe the presence of speech-induced artifacts in local-field potential (LFP) recordings obtained from mapping electrodes, DBS leads, and cortical electrodes. In addition to expected physiological increases in high gamma (60-200 Hz) activity during speech production, time-frequency analysis in many channels revealed a narrowband gamma component that exhibited a pattern similar to that observed in the speech audio spectrogram. This component was present to different degrees in multiple types of neural recordings. We show that this component tracks the fundamental frequency of the participant's voice, correlates with the power spectrum of speech and has coherence with the produced speech audio. A vibration sensor attached to the stereotactic frame recorded speech-induced vibrations with the same pattern observed in the LFPs. No corresponding component was identified in any neural channel during the listening epoch of a syllable repetition task. These observations demonstrate how speech-induced vibrations can create artifacts in the primary frequency band of interest. Identifying and accounting for these artifacts is crucial for establishing the validity and reproducibility of speech-related data obtained from intracranial recordings during DBS surgery.


Subject(s)
Artifacts , Deep Brain Stimulation , Electrocorticography , Speech , Aged , Auditory Perception , Female , Humans , Intraoperative Period , Male , Parkinson Disease/surgery
3.
Article in English | MEDLINE | ID: mdl-33644783

ABSTRACT

A common feature in many neuroscience datasets is the presence of hierarchical data structures, most commonly recording the activity of multiple neurons in multiple animals across multiple trials. Accordingly, the measurements constituting the dataset are not independent, even though the traditional statistical analyses often applied in such cases (e.g., Student's t-test) treat them as such. The hierarchical bootstrap has been shown to be an effective tool to accurately analyze such data and while it has been used extensively in the statistical literature, its use is not widespread in neuroscience - despite the ubiquity of hierarchical datasets. In this paper, we illustrate the intuitiveness and utility of this approach to analyze hierarchically nested datasets. We use simulated neural data to show that traditional statistical tests can result in a false positive rate of over 45%, even if the Type-I error rate is set at 5%. While summarizing data across non-independent points (or lower levels) can potentially fix this problem, this approach greatly reduces the statistical power of the analysis. The hierarchical bootstrap, when applied sequentially over the levels of the hierarchical structure, keeps the Type-I error rate within the intended bound and retains more statistical power than summarizing methods. We conclude by demonstrating the effectiveness of the method in two real-world examples, first analyzing singing data in male Bengalese finches (Lonchura striata var. domestica) and second quantifying changes in behavior under optogenetic control in flies (Drosophila melanogaster).

4.
eNeuro ; 6(3)2019.
Article in English | MEDLINE | ID: mdl-31126913

ABSTRACT

Dopamine is hypothesized to convey error information in reinforcement learning tasks with explicit appetitive or aversive cues. However, during motor skill learning feedback signals arise from an animal's evaluation of sensory feedback resulting from its own behavior, rather than any external reward or punishment. It has previously been shown that intact dopaminergic signaling from the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) complex is necessary for vocal learning when songbirds modify their vocalizations to avoid hearing distorted auditory feedback (playbacks of white noise). However, it remains unclear whether dopaminergic signaling underlies vocal learning in response to more naturalistic errors (pitch-shifted feedback delivered via headphones). We used male Bengalese finches (Lonchura striata var. domestica) to test the hypothesis that the necessity of dopamine signaling is shared between the two types of learning. We combined 6-hydroxydopamine (6-OHDA) lesions of dopaminergic terminals within Area X, a basal ganglia nucleus critical for song learning, with a headphones learning paradigm that shifted the pitch of auditory feedback and compared their learning to that of unlesioned controls. We found that 6-OHDA lesions affected song behavior in two ways. First, over a period of days lesioned birds systematically lowered their pitch regardless of the presence or absence of auditory errors. Second, 6-OHDA lesioned birds also displayed severe deficits in sensorimotor learning in response to pitch-shifted feedback. Our results suggest roles for dopamine in both motor production and auditory error processing, and a shared mechanism underlying vocal learning in response to both distorted and pitch-shifted auditory feedback.


Subject(s)
Adaptation, Physiological/physiology , Basal Ganglia/physiology , Dopamine/physiology , Finches/physiology , Motor Skills/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Feedback, Sensory/physiology , Male
5.
Phys Biol ; 14(5): 055004, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28825411

ABSTRACT

We re-examined data from the classic Luria-Delbrück fluctuation experiment, which is often credited with establishing a Darwinian basis for evolution. We argue that, for the Lamarckian model of evolution to be ruled out by the experiment, the experiment must favor pure Darwinian evolution over both the Lamarckian model and a model that allows both Darwinian and Lamarckian mechanisms (as would happen for bacteria with CRISPR-Cas immunity). Analysis of the combined model was not performed in the original 1943 paper. The Luria-Delbrück paper also did not consider the possibility of neither model fitting the experiment. Using Bayesian model selection, we find that the Luria-Delbrück experiment, indeed, favors the Darwinian evolution over purely Lamarckian. However, our analysis does not rule out the combined model, and hence cannot rule out Lamarckian contributions to the evolutionary dynamics.


Subject(s)
Biological Evolution , Escherichia coli/genetics , Models, Genetic , Bayes Theorem , Escherichia coli/growth & development , Escherichia coli/virology , T-Phages/genetics , T-Phages/physiology
6.
Nature ; 546(7657): 297-301, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28562592

ABSTRACT

Adult pair bonding involves dramatic changes in the perception and valuation of another individual. One key change is that partners come to reliably activate the brain's reward system, although the precise neural mechanisms by which partners become rewarding during sociosexual interactions leading to a bond remain unclear. Here we show, using a prairie vole (Microtus ochrogaster) model of social bonding, how a functional circuit from the medial prefrontal cortex to nucleus accumbens is dynamically modulated to enhance females' affiliative behaviour towards a partner. Individual variation in the strength of this functional connectivity, particularly after the first mating encounter, predicts how quickly animals begin affiliative huddling with their partner. Rhythmically activating this circuit in a social context without mating biases later preference towards a partner, indicating that this circuit's activity is not just correlated with how quickly animals become affiliative but causally accelerates it. These results provide the first dynamic view of corticostriatal activity during bond formation, revealing how social interactions can recruit brain reward systems to drive changes in affiliative behaviour.


Subject(s)
Arvicolinae/physiology , Arvicolinae/psychology , Nucleus Accumbens/physiology , Pair Bond , Prefrontal Cortex/physiology , Reward , Social Behavior , Animals , Female , Male , Mating Preference, Animal/physiology , Nucleus Accumbens/cytology , Prefrontal Cortex/cytology , Time Factors
7.
J Neurosci ; 36(7): 2176-89, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26888928

ABSTRACT

Although the brain relies on auditory information to calibrate vocal behavior, the neural substrates of vocal learning remain unclear. Here we demonstrate that lesions of the dopaminergic inputs to a basal ganglia nucleus in a songbird species (Bengalese finches, Lonchura striata var. domestica) greatly reduced the magnitude of vocal learning driven by disruptive auditory feedback in a negative reinforcement task. These lesions produced no measureable effects on the quality of vocal performance or the amount of song produced. Our results suggest that dopaminergic inputs to the basal ganglia selectively mediate reinforcement-driven vocal plasticity. In contrast, dopaminergic lesions produced no measurable effects on the birds' ability to restore song acoustics to baseline following the cessation of reinforcement training, suggesting that different forms of vocal plasticity may use different neural mechanisms. SIGNIFICANCE STATEMENT: During skill learning, the brain relies on sensory feedback to improve motor performance. However, the neural basis of sensorimotor learning is poorly understood. Here, we investigate the role of the neurotransmitter dopamine in regulating vocal learning in the Bengalese finch, a songbird with an extremely precise singing behavior that can nevertheless be reshaped dramatically by auditory feedback. Our findings show that reduction of dopamine inputs to a region of the songbird basal ganglia greatly impairs vocal learning but has no detectable effect on vocal performance. These results suggest a specific role for dopamine in regulating vocal plasticity.


Subject(s)
Dopamine/physiology , Finches/physiology , Learning/physiology , Vocalization, Animal/physiology , Animals , Basal Ganglia/cytology , Basal Ganglia/physiology , Cell Count , Conditioning, Operant/physiology , Feedback, Physiological , Male , Nerve Fibers/physiology , Neurons/physiology , Reinforcement, Psychology
8.
Hippocampus ; 25(9): 1052-70, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25678405

ABSTRACT

Hippocampal place cells that are activated sequentially during active waking get reactivated in a temporally compressed (5-20 times) manner during slow-wave-sleep and quiet waking. The two-stage model of the hippocampus suggests that neural activity during awaking supports encoding function while temporally compressed reactivation (replay) supports consolidation. However, the mechanisms supporting different neural activity with different temporal scales during encoding and consolidation remain unclear. Based on the idea that acetylcholine modulates functional transition between encoding and consolidation, we tested whether the cholinergic modulation may adjust intrinsic network dynamics to support different temporal scales for these two modes of operation. Simulations demonstrate that cholinergic modulation of the calcium activated non-specific cationic (CAN) current and the synaptic transmission may be sufficient to switch the network dynamics between encoding and consolidation modes. When the CAN current is active and the synaptic transmission is suppressed, mimicking the high acetylcholine condition during active waking, a slow propagation of multiple spikes is evident. This activity resembles the firing pattern of place cells and time cells during active waking. On the other hand, when CAN current is suppressed and the synaptic transmission is intact, mimicking the low acetylcholine condition during slow-wave-sleep, a time compressed fast (∼10 times) activity propagation of the same set of cells is evident. This activity resembles the time compressed firing pattern of place cells during replay and pre-play, achieving a temporal compression factor in the range observed in vivo (5-20 times). These observations suggest that cholinergic system could adjust intrinsic network dynamics suitable for encoding and consolidation through the modulation of the CAN current and synaptic conductance in the hippocampus.


Subject(s)
Calcium/metabolism , Cholinergic Agents/pharmacology , Hippocampus/cytology , Ion Channels/drug effects , Models, Neurological , Neurons/drug effects , Nonlinear Dynamics , Acetylcholine/metabolism , Action Potentials/drug effects , Animals , Computer Simulation , Ion Channels/physiology , Nerve Net/drug effects , Nerve Net/physiology , Neurons/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...