Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroendocrinology ; 74(6): 396-406, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11752896

ABSTRACT

Salt appetite, a conditioning factor for hypertension and cardiovascular diseases, is produced when high doses of mineralocorticoids are given to experimental animals. A commonly used procedure to identify neuronal activation is to determine the number of Fos-immunoreactive cells. In rats with established salt appetite after 8 days of deoxycorticosterone acetate (DOCA) treatment, Fos-positive cells were studied in seven brain areas. Significant increases in Fos activity were recorded in the paraventricular (PVN) and supraoptic (SON) nuclei, median preoptic nucleus (MnPO), organum vasculosum of the lamina terminalis (OVLT), preoptic area (POA), bed nucleus of the stria terminalis (BNST) and amygdala (AMYG). In most of these areas, increased Fos expression was also observed early (2 h) after a single DOCA injection, well before salt appetite develops. Using a mineralocorticoid receptor (MR) antibody, we studied whether Fos-active regions also expressed MR. MR-positive cells were found in the OVLT, MnPO, AMYG and BNST, but not in the POA, PVN and SON. In the PVN and SON, nevertheless, prolonged or single DOCA treatment increased expression of mRNA for arginine vasopressin (AVP). The present demonstration of Fos activation, in conjunction with differential expression of MR and stimulation of AVP mRNA, suggests that a neuroanatomical pathway comprising the AMYG, osmosensitive brain regions and magnocellular nuclei becomes activated during DOCA effects on salt appetite. It is recognized, however, that DOCA effects may also depend on mechanisms and brain structures other than those considered in the present investigation. Since some Fos-positive regions were devoid of MR, a comprehensive view of DOCA-induced salt appetite should consider nongenomic pathways of steroid action, including the role of reduced DOC metabolites binding to GABAergic membrane receptors.


Subject(s)
Appetite/physiology , Brain/metabolism , Desoxycorticosterone/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Sodium Chloride , Animals , Arginine Vasopressin/genetics , Immunohistochemistry , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Mineralocorticoid/metabolism , Tissue Distribution
2.
Brain Res ; 912(2): 144-53, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11532430

ABSTRACT

Glucocorticoids (GC) provide neuroprotection and early recovery after spinal cord injury (SCI). While several mechanisms were proposed to account for these effects, limited information exists regarding GC actions in sensory areas of the spinal cord. Presently, we studied the time course of Fos expression, and reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemical staining to monitor neuronal responses to SCI with or without GC treatment. Rats with sham-operation or transection at the thoracic level (T7-T8) received vehicle or 5 mg/kg of the GC dexamethasone (DEX) at 5 min post-lesion and were sacrificed 2 or 4 h after surgery. Another group of SCI rats received vehicle or intensive DEX treatment (5 min, 6 h, 18 h and 46 h post-lesion) and were sacrificed 48 h after surgery. The number of NADPH-d positive neurons or Fos immunoreactive nuclei was studied by computer-assisted image analysis in superficial dorsal horn (Laminae I-III) and central canal area (Lamina X) below the lesion. While constitutive Fos immunoreactive nuclei were sparse in controls, SCI increased Fos expression at 2 and 4 h after injury. DEX treatment significantly enhanced the number of Fos positive nuclei in Laminae I-III by 4 h after transection, although the response was not maintained by intensive steroid treatment when tested at 48 h after SCI. NADPH-d positive neurons in Laminae I-III increased at 2 and 4 h after SCI while a delayed increased was found in central canal area (Lamina X). DEX treatment decreased NADPH-d positive neurons to sham-operated levels at all time points examined. Thus, while GC stimulation of Fos suggests activation of neurons involved in sympathetic outflow and/or pain, down-regulation of NADPH-d indicates attenuation of nociceptive outflow, considering the role of enzyme-derived nitric oxide in pain-related mechanisms. Differential hormonal effects on these molecules agree with their localization in different cell populations.


Subject(s)
Glucocorticoids/pharmacology , NADPH Dehydrogenase/drug effects , Nitric Oxide/metabolism , Pain/drug therapy , Proto-Oncogene Proteins c-fos/drug effects , Spinal Cord Injuries/drug therapy , Substantia Gelatinosa/drug effects , Animals , Cell Count , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Drug Administration Schedule , Immunohistochemistry , Male , NADPH Dehydrogenase/metabolism , Pain/enzymology , Pain/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/enzymology , Spinal Cord Injuries/physiopathology , Substantia Gelatinosa/cytology , Substantia Gelatinosa/enzymology , Time Factors , Up-Regulation/drug effects , Up-Regulation/physiology
3.
Cell Mol Neurobiol ; 21(1): 15-27, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11440195

ABSTRACT

1. Synthesis of oxytocin (OT) and arginine-vasopressin (AVP) is increased in induced models of Type I diabetes, such as the streptozotocin model. However, these parameters have not yet been evaluated in spontaneous models, such as the nonobese diabetic mouse (NOD). Therefore, we studied in the magnocellular cells of the paraventricular nucleus (PVN) of nondiabetic and diabetic 16-week-old female NOD mice and control C57B1/6 mice, the immunocytochemistry of OT and AVP peptides and their mRNA expression, using nonisotopic in situ hybridization (ISH). 2. In nondiabetic and diabetic NOD female mice, the number of OT- and AVP-immunoreactive cells were similar to those of the controls, whereas immunoreaction intensity was significantly higher for both peptides in diabetic NOD as compared with nondiabetic NOD and control C57B1/6 mice. 3. ISH analysis showed that the number of OT mRNA-containing cells was in the same range in the three groups, whereas higher number of AVP mRNA expressing cells was found in diabetic NOD mice. However, the intensity of hybridization signal was also higher for both OT and AVP mRNA in the diabetic group as compared with nondiabetic NOD and control mice. 4. Blood chemistry demonstrated that haematrocrit, total plasma proteins, urea, sodium, and potassium were within normal limits in diabetic mice. Thus, NOD mice were neither hypernatremic nor dehydrated. 5. We suggest that upregulation of OT and AVP reflects a high-stress condition in the NOD mice. Diabetes may affect neuropeptide-producing cells of the PVN, with the increased AVP and OT playing a deleterious role on the outcome of the disease.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Oxytocin/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Vasopressins/genetics , Animals , Diabetes Mellitus, Type 1/genetics , Female , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Oxytocin/analysis , Paraventricular Hypothalamic Nucleus/chemistry , RNA, Messenger/analysis , Specific Pathogen-Free Organisms , Vasopressins/analysis
4.
J Steroid Biochem Mol Biol ; 70(1-3): 47-57, 1999.
Article in English | MEDLINE | ID: mdl-10529002

ABSTRACT

Mineralocorticoids play a predominant role in development of salt appetite and hypertension. Since vasoactive peptides could mediate the central effects of mineralocorticoids, we evaluated changes of immunoreactive (IR) arginine vasopressin (AVP) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nucleus during DOCA-induced salt appetite. In one model, rats having free access to water and 3% NaCl during 9 (prehypertensive stage) or 21 days (hypertensive stage) received DOCA (s.c., 10 mg/rat/in alternate days). A decrease in the IR cell area, number of IR cells and staining intensity was obtained in magnocellular PVN of rats treated during 9 days. After 21 days IR cell area and number of cells in the PVN also decreased, but staining intensity of remaining cells was normal. The same parameters were unchanged in the SON. In another model, animals treated with DOCA during 9 days had only access to 3% NaCl or water. The IR cell area in PVN and SON significantly increased in mineralocorticoid-treated and control animals, both drinking 3% NaCl. Staining intensity (PVN and SON) and number of IR cells (PVN) also augmented in DOCA-treated animals drinking salt respect of a group drinking water. Plasma AVP in rats treated with DOCA and offered salt and water, exhibited a 2-2.5 fold increase at the time of salt appetite induction. Plasma AVP was substantially higher in rats drinking salt only, while the highest levels were present in salt-drinking DOCA-treated rats. Thus, peptide depletion in the PVN may be due to increased release, because reduced levels of hypothalamic and posterior pituitary AVP were measured in this model. In rats drinking salt only the substantial increase of IR AVP in the PVN and SON, may be due to dehydration and hyperosmosis. Because DOCA-salt treated rats showed higher AVP levels in the PVN compared to untreated rats drinking salt only, it is possible that DOCA sensitized PVN cells to increase AVP production. The results suggest the vasopressinergic system could mediate some central functions of mineralocorticoids.


Subject(s)
Appetite/drug effects , Desoxycorticosterone/pharmacology , Hypothalamus/metabolism , Sodium Chloride, Dietary , Vasopressins/metabolism , Animals , Immunohistochemistry , Male , Radioimmunoassay , Rats , Rats, Sprague-Dawley , Vasopressins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...