Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3920-3923, 2021 11.
Article in English | MEDLINE | ID: mdl-34892089

ABSTRACT

Time-of-flight (TOF) magnetic resonance angiography is a non-invasive imaging modality for the diagnosis of intracranial atherosclerotic diseases (ICAD). Evaluation of the degree of the stenosis and status of posterior and anterior communicating arteries to supply enough blood flow to the distal arteries is very critical, which requires accurate evaluation of arteries. Recently, deep-learning methods have been firmly established as a robust tool in medical image segmentation, which has been resulted in developing multiple customized algorithms. For instance, BRAVE-NET, a context-based successor of U-Net-has shown promising results in MRA cerebrovascular segmentation. Another widely used context-based 3D CNN-DeepMedic-has been shown to outperform U-Net in cerebrovascular segmentation of 3D digital subtraction angiography. In this study, we aim to train and compare the two state-of-the-art deep-learning networks, BRAVE-NET and DeepMedic, for automated and reliable brain vessel segmentation from TOF-MRA images in ICAD patients. Using specially labeled data-labeled on TOF MRA and corrected on high-resolution black-blood MRI, of 51 patients with ICAD due to severe stenosis, we trained and tested both models. On an independent test dataset of 11 cases, DeepMedic slightly outperformed BRAVE-NET in terms of DSC (0.905±0.012 vs 0.893±0.015, p: 0.539) and 95HD (0.754±0.223 vs 1.768±0.609, p: 0.134), and significantly outperformed BRAVE-NET in terms of Recall (0.940±0.023 vs 0.855±0.030, p: 0.036). Qualitative assessment confirmed the superiority of DeepMedic in capturing the small and distal arteries. While BRAVE-NET consistently reported higher precision, DeepMedic generally overpredicted and could better visualize the smaller and distal arteries. In future studies, ensemble models that can leverage best of both should be developed and tested on larger datasets.Clinical Relevance- This study helps elevate the state-of-the-art for brain vessel segmentation from non-invasive MRA, which could accelerate the translation of vessel status-based biomarkers into the clinical setting.


Subject(s)
Intracranial Arteriosclerosis , Magnetic Resonance Imaging , Angiography, Digital Subtraction , Arteries , Humans , Intracranial Arteriosclerosis/diagnostic imaging , Magnetic Resonance Angiography
2.
Brain Sci ; 11(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34679386

ABSTRACT

A direct aspiration-first pass technique (ADAPT) has recently gained popularity for the treatment of large vessel ischemic stroke. Here, we sought to create a machine learning-based model that uses pre-treatment imaging metrics to predict successful outcomes for ADAPT in middle cerebral artery (MCA) stroke cases. In 119 MCA strokes treated by ADAPT, we calculated four imaging parameters-clot length, perviousness, distance from the internal carotid artery (ICA) and angle of interaction (AOI) between clot/catheter. We determined treatment success by first pass effect (FPE), and performed univariate analyses. We further built and validated multivariate machine learning models in a random train-test split (75%:25%) of our data. To test model stability, we repeated the machine learning procedure over 100 randomizations, and reported the average performances. Our results show that perviousness (p = 0.002) and AOI (p = 0.031) were significantly higher and clot length (p = 0.007) was significantly lower in ADAPT cases with FPE. A logistic regression model achieved the highest accuracy (74.2%) in the testing cohort, with an AUC = 0.769. The models had similar performance over the 100 train-test randomizations (average testing AUC = 0.768 ± 0.026). This study provides feasibility of multivariate imaging-based predictors for stroke treatment outcome. Such models may help operators select the most adequate thrombectomy approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...