Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 31(8): 891-907, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33498084

ABSTRACT

The relevance of glycan-binding proteins in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins, both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain, atypical secretion via an endoplasmic reticulum-Golgi-independent pathway and by the ability to recognize ß-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family, displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to delineate tailored therapeutic strategies aimed at positively or negatively modulating this glycan-binding protein in pathologic inflammatory conditions.


Subject(s)
Galectin 1 , Galectins , Carbohydrates , Galectin 1/genetics , Galectins/metabolism , Humans , Inflammation/metabolism , Polysaccharides/metabolism
2.
Proc Natl Acad Sci U S A ; 117(12): 6630-6639, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32161138

ABSTRACT

Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1-/- ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking ß1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating ß1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.


Subject(s)
Autoimmune Diseases/pathology , Galectin 1/physiology , Immune Tolerance/immunology , Salivary Glands/pathology , Sialadenitis/pathology , Sjogren's Syndrome/pathology , T-Lymphocytes, Regulatory/immunology , Adult , Age Factors , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Case-Control Studies , Dendritic Cells/immunology , Female , Glycosylation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Middle Aged , N-Acetylglucosaminyltransferases/physiology , Polysaccharides/metabolism , Salivary Glands/immunology , Salivary Glands/metabolism , Sialadenitis/immunology , Sialadenitis/metabolism , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism
3.
J Biol Chem ; 291(14): 7767-73, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26858246

ABSTRACT

P5-ATPases are important for processes associated with the endosomal-lysosomal system of eukaryotic cells. In humans, the loss of function of P5-ATPases causes neurodegeneration. In the yeastSaccharomyces cerevisiae, deletion of P5-ATPase Spf1p gives rise to endoplasmic reticulum stress. The reaction cycle of P5-ATPases is poorly characterized. Here, we showed that the formation of the Spf1p catalytic phosphoenzyme was fast in a reaction medium containing ATP, Mg(2+), and EGTA. Low concentrations of Ca(2+)in the phosphorylation medium decreased the rate of phosphorylation and the maximal level of phosphoenzyme. Neither Mn(2+)nor Mg(2+)had an inhibitory effect on the formation of the phosphoenzyme similar to that of Ca(2+) TheKmfor ATP in the phosphorylation reaction was ∼1 µmand did not significantly change in the presence of Ca(2+) Half-maximal phosphorylation was attained at 8 µmMg(2+), but higher concentrations partially protected from Ca(2+)inhibition. In conditions similar to those used for phosphorylation, Ca(2+)had a small effect accelerating dephosphorylation and minimally affected ATPase activity, suggesting that the formation of the phosphoenzyme was not the limiting step of the ATP hydrolytic cycle.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Calcium/metabolism , Endoplasmic Reticulum Stress/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , ATP-Binding Cassette Transporters/genetics , Phosphorylation/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...