Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Cell Cycle ; 17(13): 1559-1578, 2018.
Article in English | MEDLINE | ID: mdl-29963966

ABSTRACT

The SWI/SNF ATP-dependent chromatin-remodeling complex is an important evolutionarily conserved regulator of cell cycle progression. It associates with the Retinoblastoma (pRb)/HDAC/E2F/DP transcription complex to modulate cell cycle-dependent gene expression. The key catalytic component of the SWI/SNF complex in mammals is the ATPase subunit, Brahma (BRM) or BRG1. BRG1 was previously shown to be phosphorylated by the G1-S phase cell cycle regulatory kinase Cyclin E/CDK2 in vitro, which was associated with the bypass of G1 arrest conferred by BRG1 expression. However, it is unknown whether direct Cyclin E/CDK2-mediated phosphorylation of BRM/BRG1 is important for G1-S phase cell cycle progression and proliferation in vivo. Herein, we demonstrate for the first time the importance of CDK-mediated phosphorylation of Brm in cell proliferation and differentiation in vivo using the Drosophila melanogaster model organism. Expression of a CDK-site phospho-mimic mutant of Brm, brm-ASP (all the potential CDK sites are mutated from Ser/Thr to Asp), which acts genetically as a brm loss-of-function allele, dominantly accelerates progression into the S phase, and bypasses a Retinoblastoma-induced developmental G1 phase arrest in the wing epithelium. Conversely, expression of a CDK-site phospho-blocking mutation of Brm, brm-ALA, acts genetically as a brm gain-of-function mutation, and in a Brm complex compromised background reduces S phase cells. Expression of the brm phospho-mutants also affected differentiation and Decapentaplegic (BMP/TGFß) signaling in the wing epithelium. Altogether our results show that CDK-mediated phosphorylation of Brm is important in G1-S phase regulation and differentiation in vivo. ABBREVIATIONS: A-P: Anterior-Posterior; BAF: BRG1-associated factor; BMP: Bone Morphogenetic Protein; Brg1: Brahma-Related Gene 1; Brm: Brahma; BSA: Bovine Serum Albumin; CDK: Cyclin dependent kinase dpp: decapentaplegic; EdU: 5-Ethynyl 2'-DeoxyUridine; EGFR: Epidermal Growth Factor Receptor; en: engrailed; GFP: Green Fluorescent Protein; GST: Glutathione-S-Transferase; HDAC: Histone DeACetylase; JNK: c-Jun N-terminal Kinase; Mad: Mothers Against Dpp; MAPK: Mitogen Activated Protein Kinase; MB:: Myelin Basic Protein; nub: nubbin; pH3: phosphorylated Histone H3; PBS: Phosphate Buffered Saline; PBT: PBS Triton; PFA: ParaFormAldehydep; Rb: Retinoblastoma protein; PCV: Posterior Cross-Vein; Snr1: Snf5-Related 1; SWI/SNF: SWitch/Sucrose Non-Fermentable; TGFß: Transforming Growth Factor ß; TUNEL: TdT-mediated dUTP Nick End Labelling; Wg: Wingless; ZNC: Zone of Non-Proliferating Cells.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle , Cell Differentiation , Cyclin-Dependent Kinases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Trans-Activators/metabolism , Alleles , Animals , Cell Death , Epistasis, Genetic , Epithelium/metabolism , Mutation/genetics , Phosphorylation , S Phase , Signal Transduction , Wings, Animal/growth & development
2.
Cell Cycle ; 15(1): 137-51, 2016.
Article in English | MEDLINE | ID: mdl-26771717

ABSTRACT

Expression of Breast Cancer Metastasis Suppressor 1 (BRMS1) reduces the incidence of metastasis in many human cancers, without affecting tumorigenesis. BRMS1 carries out this function through several mechanisms, including regulation of gene expression by binding to the mSin3/histone deacetylase (HDAC) transcriptional repressor complex. In the present study, we show that BRMS1 is a novel substrate of Cyclin-Dependent Kinase 2 (CDK2) that is phosphorylated on serine 237 (S237). Although CDKs are known to regulate cell cycle progression, the mutation of BRMS1 on serine 237 did not affect cell cycle progression and proliferation of MDA-MB-231 breast cancer cells; however, their migration was affected. Phosphorylation of BRMS1 does not affect its association with the mSin3/HDAC transcriptional repressor complex or its transcriptional repressor activity. The serine 237 phosphorylation site is immediately proximal to a C-terminal nuclear localization sequence that plays an important role in BRMS1-mediated metastasis suppression but phosphorylation does not control BRMS1 subcellular localization. Our studies demonstrate that CDK-mediated phosphorylation of BRMS1 regulates the migration of tumor cells.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement/physiology , Cyclin-Dependent Kinase 2/physiology , Repressor Proteins/metabolism , Cell Line, Tumor , Female , HEK293 Cells , Humans , Phosphorylation/physiology
3.
Sci Rep ; 5: 14849, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26463729

ABSTRACT

Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.


Subject(s)
Models, Chemical , Molecular Docking Simulation , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitin/chemistry , Ubiquitin/ultrastructure , Binding Sites , Catalysis , Enzyme Activation , Phosphorylation , Protein Binding , Ubiquitination
4.
Cell Cycle ; 14(13): 2058-74, 2015.
Article in English | MEDLINE | ID: mdl-25928398

ABSTRACT

The final stage of mitosis is cytokinesis, which results in 2 independent daughter cells. Cytokinesis has 2 phases: membrane ingression followed by membrane abscission. IQGAP1 is a scaffold protein that interacts with proteins implicated in mitosis, including F-actin, myosin and CaM. IQGAP1 in yeast recruits actin and myosin II filaments to the contractile ring for membrane ingression. In contrast, we show that mammalian IQGAP1 is not required for ingression, but coordinates nuclear pore complex (NPC) reassembly and completion of abscission. Depletion of IQGAP1 disrupts Nup98 and mAb414 nuclear envelope localization and delays abscission timing. IQGAP1 phosphorylation increases 15-fold upon mitotic entry at S86, S330 and T1434, with the latter site being targeted by CDK2/Cyclin A and CDK1/Cyclin A/B in vitro. Expressing the phospho-deficient mutant IQGAP1-S330A impairs NPC reassembly in cells undergoing abscission. Thus, mammalian IQGAP1 functions later in mitosis than its yeast counterpart to regulate nuclear pore assembly in a S330 phosphorylation-dependent manner during the abscission phase of cytokinesis.


Subject(s)
Cytokinesis/physiology , Nuclear Envelope/metabolism , ras GTPase-Activating Proteins/metabolism , HeLa Cells , Humans , Nuclear Envelope/genetics , ras GTPase-Activating Proteins/genetics
5.
Cells ; 3(3): 674-89, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24987835

ABSTRACT

Ubiquitination is an important post-translational process involving attachment of the ubiquitin molecule to lysine residue/s on a substrate protein or on another ubiquitin molecule, leading to the formation of protein mono-, multi- or polyubiquitination. Protein ubiquitination requires a cascade of three enzymes, where the interplay between different ubiquitin-conjugating and ubiquitin-ligase enzymes generates diverse ubiquitinated proteins topologies. Structurally diverse ubiquitin conjugates are recognized by specific proteins with ubiquitin-binding domains (UBDs) to target the substrate proteins of different pathways. The mechanism/s for generating the different ubiquitinated proteins topologies is not well understood. Here, we will discuss our current understanding of the mechanisms underpinning the generation of mono- or polyubiquitinated substrates. In addition, we will discuss how linkage-specific polyubiquitin chains through lysines-11, -48 or -63 are formed to target proteins to different fates by binding specific UBD proteins.

6.
Breast Cancer Res ; 15(6): R113, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24283570

ABSTRACT

INTRODUCTION: Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. METHODS: MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann-Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). RESULTS: Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. CONCLUSIONS: This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Transcription Factors/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myb/metabolism , RNA, Small Interfering , Tumor Cells, Cultured , Zinc Finger E-box-Binding Homeobox 1
7.
PLoS One ; 8(8): e72850, 2013.
Article in English | MEDLINE | ID: mdl-23991158

ABSTRACT

Drug resistance is a major obstacle for the successful treatment of many malignancies, including neuroblastoma, the most common extracranial solid tumor in childhood. Therefore, current attempts to improve the survival of neuroblastoma patients, as well as those with other cancers, largely depend on strategies to counter cancer cell drug resistance; hence, it is critical to understand the molecular mechanisms that mediate resistance to chemotherapeutics. The levels of LIM-kinase 2 (LIMK2) are increased in neuroblastoma cells selected for their resistance to microtubule-targeted drugs, suggesting that LIMK2 might be a possible target to overcome drug resistance. Here, we report that depletion of LIMK2 sensitizes SHEP neuroblastoma cells to several microtubule-targeted drugs, and that this increased sensitivity correlates with enhanced cell cycle arrest and apoptosis. Furthermore, we show that LIMK2 modulates microtubule acetylation and the levels of tubulin Polymerization Promoting Protein 1 (TPPP1), suggesting that LIMK2 may participate in the mitotic block induced by microtubule-targeted drugs through regulation of the microtubule network. Moreover, LIMK2-depleted cells also show an increased sensitivity to certain DNA-damage agents, suggesting that LIMK2 might act as a general pro-survival factor. Our results highlight the exciting possibility of combining specific LIMK2 inhibitors with anticancer drugs in the treatment of multi-drug resistant cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Drug Resistance, Neoplasm/physiology , Lim Kinases/physiology , Neuroblastoma/pathology , Acetylation , Cell Line, Tumor , DNA Damage , Humans , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , Up-Regulation/drug effects
8.
Cell Cycle ; 12(11): 1732-44, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23656784

ABSTRACT

The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the -2, -1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.


Subject(s)
Lysine/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination
9.
J Biol Chem ; 288(11): 7907-7917, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23355470

ABSTRACT

Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.


Subject(s)
CDC2 Protein Kinase/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , rho-Associated Kinases/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , G1 Phase , Gene Expression Regulation , Humans , Microscopy, Fluorescence/methods , Mitosis , Models, Biological , Phenanthrenes , Phosphorylation , Propidium/pharmacology , Protein Binding , S Phase
10.
IUBMB Life ; 64(2): 136-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22131221

ABSTRACT

Ubiquitination involves the attachment of ubiquitin (Ub) to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Polyubiquitination through different lysines (seven) or the N-terminus of Ub can generate different protein-Ub structures. These include monoubiquitinated proteins, polyubiqutinated proteins with homotypic chains through a particular lysine on Ub or mixed polyubiquitin chains generated by polymerization through different Ub lysines. The ability of the ubiquitination pathway to generate different protein-Ub structures provides versatility of this pathway to target proteins to different fates. Protein ubiquitination is catalyzed by Ub-conjugating and Ub-ligase enzymes, with different combinations of these enzymes specifying the type of Ub modification on protein substrates. How Ub-conjugating and Ub-ligase enzymes generate this structural diversity is not clearly understood. In the current review, we discuss mechanisms utilized by the Ub-conjugating and Ub-ligase enzymes to generate structural diversity during protein ubiquitination, with a focus on recent mechanistic insights into protein monoubiquitination and polyubiquitination.


Subject(s)
Protein Processing, Post-Translational , Ubiquitinated Proteins/metabolism , Ubiquitination/physiology , Animals , Humans , Polyubiquitin/metabolism , Protein Structure, Quaternary , Proteolysis , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitinated Proteins/chemistry
11.
Biochim Biophys Acta ; 1813(10): 1689-99, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21195118

ABSTRACT

Calcineurin is a phosphatase that is activated at the last known stage of mitosis, abscission. Among its many substrates, it dephosphorylates dynamin II during cytokinesis at the midbody of dividing cells. However, dynamin II has several cellular roles including clathrin-mediated endocytosis, centrosome cohesion and cytokinesis. It is not known whether dynamin II phosphorylation plays a role in any of these functions nor have the phosphosites involved in cytokinesis been directly identified. We now report that dynamin II from rat lung is phosphorylated to a low stoichiometry on a single major site, Ser-764, in the proline-rich domain. Phosphorylation on Ser-764 also occurred in asynchronously growing HeLa cells and was greatly increased upon mitotic entry. Tryptic phospho-peptides isolated by TiO(2) chromatography revealed only a single phosphosite in mitotic cells. Mitotic phosphorylation was abolished by roscovitine, suggesting the mitotic kinase is cyclin-dependent kinase 1. Cyclin-dependent kinase 1 phosphorylated full length dynamin II and Glutathione-S-Transferase-tagged-dynamin II-proline-rich domain in vitro, and mutation of Ser-764 to alanine reduced proline-rich domain phosphorylation by 80%, supporting that there is only a single major phosphosite. Ser-764 phosphorylation did not affect clathrin-mediated endocytosis or bulk endocytosis using penetratin-based phospho-deficient or phospho-mimetic peptides or following siRNA depletion/rescue experiments. Phospho-dynamin II was enriched at the mitotic centrosome, but this targeting was unaffected by the phospho-deficient or phospho-mimetic peptides. In contrast, the phospho-mimetic peptide displaced endogenous dynamin II, but not calcineurin, from the midbody and induced cytokinesis failure. Therefore, phosphorylation of dynamin II primarily occurs on a single site that regulates cytokinesis downstream of calcineurin, rather than regulating endocytosis or centrosome function.


Subject(s)
CDC2 Protein Kinase/metabolism , Cytokinesis , Dynamin II/metabolism , Serine/metabolism , Amino Acid Sequence , Animals , CDC2 Protein Kinase/physiology , Catalytic Domain , Cells, Cultured , Cyclin B1/metabolism , Cyclin B1/physiology , Cytokinesis/genetics , Cytokinesis/physiology , Dynamin II/chemistry , Dynamin II/genetics , HeLa Cells , Humans , Molecular Sequence Data , Phosphorylation/genetics , Rats , Serine/genetics , Sheep , Spodoptera
12.
J Biol Chem ; 286(7): 5108-18, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21148318

ABSTRACT

Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G(1)-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G(1)-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G(1) into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.


Subject(s)
Cyclin-Dependent Kinase 2/metabolism , Histone Deacetylases/metabolism , Multiprotein Complexes/metabolism , Repressor Proteins/metabolism , Retinoblastoma Protein/metabolism , Retinol-Binding Proteins, Cellular/metabolism , Amino Acid Motifs , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 2/genetics , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , G1 Phase/physiology , HEK293 Cells , Histone Deacetylases/genetics , Humans , Multiprotein Complexes/genetics , Phosphorylation/physiology , Protein Stability , Repressor Proteins/genetics , Retinoblastoma Protein/genetics , Retinol-Binding Proteins, Cellular/genetics , S Phase/physiology , Spodoptera , Transcription, Genetic/physiology
13.
Cell Div ; 5: 19, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20704751

ABSTRACT

Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.

14.
Dev Biol ; 344(1): 36-51, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20416294

ABSTRACT

Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm-BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR-Ras-MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR-Ras-MAPK signaling pathway, by affecting Mek levels during Drosophila development.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , ErbB Receptors/metabolism , Gene Expression Regulation, Developmental , MAP Kinase Signaling System , Trans-Activators/metabolism , ras Proteins/metabolism , Animals , Animals, Genetically Modified , Geminin , Models, Biological , Mutation , Phenotype , RNA, Double-Stranded/metabolism , Signal Transduction , Wings, Animal
15.
Mol Cell Biol ; 30(10): 2316-29, 2010 May.
Article in English | MEDLINE | ID: mdl-20194622

ABSTRACT

Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.


Subject(s)
Lysine , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , Cell Proliferation , Cell Survival , Cyclin-Dependent Kinase Inhibitor Proteins/chemistry , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Humans , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Molecular Sequence Data , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Substrate Specificity/genetics , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitination
16.
Biosci Rep ; 30(4): 243-55, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20337599

ABSTRACT

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinases/metabolism , Animals , Humans , Models, Biological , Nuclear Proteins/metabolism , Phosphorylation , Substrate Specificity
17.
Exp Cell Res ; 313(20): 4091-106, 2007 Dec 10.
Article in English | MEDLINE | ID: mdl-18028908

ABSTRACT

LIM kinase 1 (LIMK1) is a key regulator of actin dynamics as it phosphorylates and inactivates cofilin, an actin-depolymerizing factor. LIMK1 activity is also required for microtubule disassembly in endothelial cells. A search for LIMK1-interacting proteins identified p25alpha, a phosphoprotein that promotes tubulin polymerization. We found that p25 is phosphorylated by LIMK1 on serine residues in vitro and in cells. Immunoblotting analysis revealed that p25 is not a brain specific protein as previously reported, but is expressed in all mouse tissues. Immunofluorescence analysis demonstrated that endogenous p25 is co-localized with microtubules and is also found in the nucleus. Down-regulation of p25 by siRNA decreased microtubule levels while its overexpression in stable NIH-3T3 cell lines increased cell size and levels of stable tubulin. Bacterially expressed unphosphorylated p25 promotes microtubule assembly in vitro; however, when phosphorylated in cells, p25 lost its ability to assemble microtubule. Our results represent a surprising connection between the tubulin and the actin cytoskeleton mediated by LIMK1. We propose that the LIMK1 phosphorylation of p25 blocks p25 activity, thus promoting microtubule disassembly.


Subject(s)
Lim Kinases/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , Animals , Cell Size , Down-Regulation , HeLa Cells , Humans , Immunohistochemistry , Lim Kinases/chemistry , Mice , Models, Biological , NIH 3T3 Cells , Organ Specificity , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , Recombinant Fusion Proteins/metabolism , Sheep , Subcellular Fractions/metabolism , Substrate Specificity , Tubulin/metabolism
18.
Biochem J ; 405(3): 569-81, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17461777

ABSTRACT

The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1-S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34-SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34-SCFCdc4 ubiquitination activity and cell cycle progression.


Subject(s)
Cell Cycle/physiology , SKP Cullin F-Box Protein Ligases/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin/metabolism , Acyltransferases/metabolism , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , Cell Line , Cell Proliferation , Dyneins , Gene Expression Regulation, Fungal , Humans , Molecular Sequence Data , Mutation , Phosphorylation , SKP Cullin F-Box Protein Ligases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligase Complexes/genetics
19.
Dev Cell ; 9(4): 477-88, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16198290

ABSTRACT

Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Nuclear Proteins/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins/metabolism , A Kinase Anchor Proteins , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , CDC2 Protein Kinase/genetics , Calmodulin-Binding Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Division/physiology , Cell Line , Centrosome/ultrastructure , Computational Biology , Cytoskeletal Proteins/metabolism , Humans , Mitogen-Activated Protein Kinase 1/genetics , Molecular Sequence Data , Nuclear Proteins/genetics , Phosphorylation , Protein Kinases/genetics , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Tissue Distribution , Polo-Like Kinase 1
20.
Biochem J ; 388(Pt 2): 445-54, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15683364

ABSTRACT

Sprouty and Spred {Sprouty-related EVH1 [Ena/VASP (vasodilator-stimulated phosphoprotein) homology 1] domain} proteins have been identified as antagonists of growth factor signalling pathways. We show here that Spred-1 and Spred-2 appear to have distinct mechanisms whereby they induce their effects, as the Sprouty domain of Spred-1 is not required to block MAPK (mitogen-activated protein kinase) activation, while that of Spred-2 is required. Similarly, deletion of the C-terminal Sprouty domain of Spred-1 does not affect cell-cycle progression of G(0)-synchronized cells through to S-phase following growth factor stimulation, while the Sprouty domain is required for Spred-2 function. We also demonstrate that the inhibitory function of Spred proteins is restricted to the Ras/MAPK pathway, that tyrosine phosphorylation is not required for this function, and that the Sprouty domain mediates heterodimer formation of Spred proteins. Growth-factor-mediated activation of the small GTPases, Ras and Rap1, was able to be regulated by Spred-1 and Spred-2, without affecting receptor activation. Taken together, these results highlight the potential for different functional roles of the Sprouty domain within the Spred family of proteins, suggesting that Spred proteins may use different mechanisms to induce inhibition of the MAPK pathway.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Repressor Proteins/chemistry , Adaptor Proteins, Signal Transducing , Amino Acid Motifs , Animals , Cell Line , Dimerization , Enzyme Activation , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/physiology , Membrane Proteins , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Molecular Sequence Data , Monomeric GTP-Binding Proteins/antagonists & inhibitors , Phosphorylation , Protein Structure, Tertiary , Repressor Proteins/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...