Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 149: 124-133, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35728476

ABSTRACT

The efficient reduction of accumulated waste biomass and red mud by converting them into a value-added magnetic adsorbent is both difficult and tempting in terms of sustainability. This study focused on investigating the reaction mechanism of co-pyrolysis of different biomasses, including pine wood, cellulose, and lignin, with red mud at 500, 650, and 800 °C, and the comprehensive characterizations of the produced bio-magnetic particles. The performance of biomass and red mud based magnetic adsorbents is also evaluated, and their primary adsorption mechanisms for organic pollutants are revealed by using different organic model compounds. The samples produced at 800 °C showed the best performance. For example, the sample prepared using red mud and pine wood at 800 °C showed the highest adsorption capacity of ibuprofen, which was 21.01 mg/g at ∼pH 4.5, indicating strong π stacking interactions as the dominant adsorption mechanism. When compared to lignin-rich biomass, adsorbents composed of cellulose-rich biomass showed greater adsorption efficacy. The findings show that co-pyrolysis of biomass with red mud can reduce waste while also producing a flexible adsorbent that is magnetically separable and effective at absorbing different organic contaminants from water.


Subject(s)
Pinus , Pyrolysis , Adsorption , Biomass , Cellulose/analysis , Lignin/chemistry , Magnetic Phenomena , Pinus/chemistry , Wood/chemistry
2.
ACS Omega ; 4(13): 15521-15529, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31572853

ABSTRACT

Clostridium pasteurianum DSM 525 can produce butanol, 1,3-propanediol, and ethanol from glycerol. The product distribution can be tilted toward butanol when adding butyric acid. The strain predominantly produces acetic and butyric acids when grown on saccharides. Hence, butyrate formed from saccharide conversion can be used to stimulate butanol production from glycerol under cosubstrate cultivation. The optimal cosubstrate ratio was determined, and under optimal conditions, a butanol yield and a productivity of 0.27 ± 0.01 gbutanol g-1 (glycerol + sugar) -1 and 0.74 ± 0.02 g L-1 h-1 were obtained. On the basis of these results, batch fermentation in a 5 L bioreactor was performed using Jerusalem artichoke hydrolysate (carbohydrate source) and crude glycerol (residue from biodiesel production) at the previously determined optimal condition. A butanol yield and a productivity of 0.28 ± 0.007 gbutanol g(glycerol+sugar) -1 and 0.55 ± 0.008 g L-1 h-1 were achieved after 27 h fermentation, indicating the suitability of those low-cost carbon sources as cosubstrates for butanol production via C. pasteurianum.

3.
World J Microbiol Biotechnol ; 32(6): 103, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27116969

ABSTRACT

Economic realities for the rising industrial biofuel production have changed substantially during the low oil price period starting in the mid 2010's. Increased competition requires the sector to increase productivity through the reduction of low-value by-products and full utilization of all value and energy stored in their respective feedstock. Biodiesel is produced commercially from substrates such as animal fat and vegetable oil, generating approximately 10 wt% crude glycerol as its main, currently underutilized, by-product. This crude glycerol is contaminated with catalyst, soap, free fatty acids, glycerides and methyl esters; hence only a small fraction enters the existing glycerol markets, while the purification costs for the majority of crude glycerol are simply too high. However, this presents a unique opportunity to generate additional value. One technical possibility is to use crude glycerol as a carbon source for butanol production, a compound of higher value and energy, a potential additive for gasoline and diesel fuels and bulk chemical commodity. Conversion facilities could be co-located with biodiesel plants, utilizing established infrastructure and adding significant value and productivity to the existing biodiesel industry. This review focuses on the current activities geared towards the bioconversion of crude glycerol to butanol.


Subject(s)
Bacteria/metabolism , Biofuels , Butanols/metabolism , Glycerol/metabolism , Bacteria/genetics , Carbon/metabolism , Fermentation , Industrial Microbiology , Industry , Metabolic Engineering , Metabolic Networks and Pathways , Mutagenesis
4.
Bioresour Technol ; 208: 73-80, 2016 May.
Article in English | MEDLINE | ID: mdl-26922315

ABSTRACT

Butanol is a promising biofuel and valuable platform chemical that can be produced through fermentative conversion of glycerol. The initial fermentation conditions for butanol production from pure glycerol by Clostridium pasteurianum DSM 525 were optimized via a central composite design. The effect of inoculum age, initial cell density, initial pH of medium and temperature were quantified and a quadratic model was able to predict butanol yield as a function of all four investigated factors. The model was confirmed through additional experiments and via analysis of variance (ANOVA). Subsequently, numerical optimization was used to maximize the butanol yield within the experimental range. Based on these results, batch fermentations in a 7 L bioreactor were performed using pure and crude (residue from biodiesel production) glycerol as substrates at optimized conditions. A butanol yield of 0.34 mole(butanol) mole(-1)(glycerol) was obtained indicating the suitability of this feedstock for fermentative butanol production.


Subject(s)
Butanols/metabolism , Clostridium/metabolism , Glycerol/metabolism , Analysis of Variance , Biofuels , Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Fermentation , Models, Theoretical , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...