Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(14): 15833-15844, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617624

ABSTRACT

Microbial infections represent a significant health risk, often leading to severe complications and, in some cases, even fatalities. As a result, there is an urgent need to explore innovative drug delivery systems and alternative therapeutic techniques. The photothermal therapy has emerged as a promising antibacterial approach and is the focus of this study. Herein, we report the successful synthesis of two distinct supramolecular composite hydrogels by incorporating graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) into guanosine quadruplex (G4) based hydrogels containing covalently bound ß-cyclodextrin (ß-CD). The G4 matrix was synthesized through a two-step process, establishing a robust network between G4 and ß-CDs, followed by the encapsulation of either GO or SWNTs. Comprehensive characterization of these composite hydrogels were conducted using analytical techniques, including circular dichroism, Raman spectroscopy, rheological investigations, X-ray diffraction, and scanning electron microscopy. A notable discovery from the conducted research is the differential photothermal responses exhibited by the hydrogels when exposed to near-infrared laser irradiation. Specifically, SWNT-based hydrogels demonstrated superior photothermal performance, achieving a remarkable temperature increase of up to 52 °C, in contrast to GO-based hydrogels, which reached a maximum of 34 °C. These composite hydrogels showed good cytotoxicity evaluation results and displayed synergistic antibacterial activity against Staphylococcus aureus, positioning them as promising candidates for antibacterial photothermic platforms, particularly in the context of wound treatment. This study offers a valuable contribution to the development of advanced and combined therapeutic strategies for combating microbial infections and highlights the potential of carbon nanomaterial-enhanced supramolecular hydrogels in photothermal therapy applications.

2.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110795

ABSTRACT

Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.


Subject(s)
Nanoparticles , Nanostructures , Nucleic Acids , Spectrum Analysis, Raman/methods , Nanostructures/chemistry , Fluorescent Dyes/chemistry , Molecular Imaging/methods , Nucleic Acid Probes
3.
Chem Commun (Camb) ; 59(21): 3134-3137, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36810644

ABSTRACT

Hybrid dextran-G-quartet produces tunable biocompatible three-dimensional thixotropic hydrogels, able to support cell growth.


Subject(s)
Dextrans , G-Quadruplexes , Hydrogels , Cell Proliferation , Biocompatible Materials
4.
Molecules ; 26(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834036

ABSTRACT

A series of neutral mononuclear lanthanide complexes [Ln(HL)2(NO3)3] (Ln = La, Ce, Nd, Eu, Gd, Dy, Ho) with rigid bidentate ligand, HL (4'-(1H-imidazol-1-yl)biphenyl-4-carboxylic acid) were synthesized under solvothermal conditions. The coordination compounds have been characterized by infrared spectroscopy, thermogravimetry, powder X-ray diffraction and elemental analysis. According to X-ray diffraction, all the complexes are a series of isostructural compounds crystallized in the P2/n monoclinic space group. Additionally, solid-state luminescence measurements of all complexes show that [Eu(HL)2(NO3)3] complex displays the characteristic emission peaks of Eu(III) ion at 593, 597, 615, and 651 nm.

5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502085

ABSTRACT

Facile method for the preparation of ß-cyclodextrin-functionalized hydrogels based on guanosine quartet assembly was described. A series of seven hydrogels were prepared by linking ß-cyclodextrin molecules with guanosine moieties in different ratios through benzene-1,4-diboronic acid linker in the presence of potassium hydroxide. The potassium ions acted as a reticulation agent by forming guanosine quartets, leading to the formation of self-sustained transparent hydrogels. The ratios of the ß-cyclodextrin and guanosine components have a significant effect on the internal structuration of the components and, correspondingly, on the mechanical properties of the final gels, offering a tunablity of the system by varying the components ratio. The insights into the hydrogels' structuration were achieved by circular dichroism, scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Rheological measurements revealed self-healing and thixotropic properties of all the investigated samples, which, in combination with available cyclodextrin cavities for active components loading, make them remarkable candidates for specific applications in biomedical and pharmaceutical fields. Moreover, all the prepared samples displayed selective antimicrobial properties against S. aureus in planktonic and biofilm phase, the activity also depending on the guanosine and cyclodextrin ratio within the hydrogel structure.


Subject(s)
Anti-Infective Agents/chemical synthesis , G-Quadruplexes , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Candida/drug effects , Hydrogels/pharmacology , Staphylococcus aureus/drug effects
6.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987884

ABSTRACT

We have designed and synthesized a series of novel, supramolecular, long-lived fluorescent probes based on the host-guest inclusion complexes formation between fluorescent indolizinyl-pyridinium salts and ß-cyclodextrin. Fluorescence and electrospray ionisation mass spectrometry experiments, supported by theoretical molecular docking studies, were utilized in the monitoring of the inclusion complexes formation, evidencing the appearance of corresponding 1:1 and 1:2 species. Additionally, the influence of the guest molecule over the aggregation processes of the cyclodextrin inclusion complexes was investigated by transmission electron microscopy. The absence of cytotoxicity, cellular permeability, long-lived intracellular fluorescence, and in time specific accumulation within acidic organelles identified the investigated supramolecular entities as remarkable candidates for intracellular fluorescence probes. Co-staining experiments using specific organelle markers revealed the fact that, after a 24-h incubation period, the inclusion complexes accumulate predominantly in lysosomes rather than in mitochondria. This study opens new possibilities for a broad range of fluorescent dyes with solubility and high toxicity issues, able to form inclusion complexes with ß-cyclodextrin, to be tested as intracellular fluorescence probes.


Subject(s)
Cyclodextrins/chemistry , Fluorescent Dyes/chemistry , Molecular Docking Simulation , Spectrometry, Fluorescence
7.
J Enzyme Inhib Med Chem ; 35(1): 1581-1595, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32752898

ABSTRACT

A potential microtubule destabilising series of new indolizine derivatives was synthesised and tested for their anticancer activity against a panel of 60 human cancer cell lines. Compounds 11a, 11b, 15a, and 15j showed a broad spectrum of growth inhibitory activity against cancer cell lines representing leukaemia, melanoma and cancer of lung, colon, central nervous system, ovary, kidney, breast, and prostate. Among them, compound 11a was distinguishable by its excellent cytostatic activity, showing GI50 values in the range of 10-100 nM on 43 cell lines. The less potent compounds 15a and 15j in terms of GI50 values showed a high cytotoxic effect against tested colon cancer, CNS cancer, renal cancer and melanoma cell lines and only on few cell lines from other types of cancer. In vitro assaying revealed tubulin polymerisation inhibition by all active compounds. Molecular docking showed good complementarity of active compounds with the colchicine binding site of tubulin.


Subject(s)
Antineoplastic Agents/pharmacology , Colchicine/pharmacology , Indolizines/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemical synthesis , Colchicine/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indolizines/chemical synthesis , Indolizines/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...