Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 295: 133917, 2022 May.
Article in English | MEDLINE | ID: mdl-35157881

ABSTRACT

In this research, insertion of Gd ions (2 wt%) into the crystalline lattice of the ZnS QDs enhanced the photocatalytic activity of the QDs. In addition, the influence of graphene oxide (GO) and graphitic carbon nitride (g-C3N4) was assessed on the photocatalytic activity of the ZnS QDs through degradation of acid red 14 (AR14) and bisphenol-A (BA) under visible light. Higher photocatalytic degradation efficiency (97.1% for AR14 and 67.4% for BA within 180 min) and higher total organic carbon (TOC) removal (67.1% for AR14 and 59.2% for BA within 5 h) was achieved in the presence of ZnS QDs/g-C3N4 compared with ZnS QDs/GO nanocomposite. Finally, the Gd-doped ZnS QDs were hybridized with g-C3N4 as optimal support to fabricate a potent visible-light-driven photocatalyst for the decomposition of organic contaminants. The maximum photocatalytic degradation of 99.1% and 80.5% were achieved for AR14 and BA, respectively, in the presence of Gd-doped ZnS QDs/g-C3N4 nanocomposite. The photosensitization mechanism was suggested for the improved photocatalytic activity of the ZnS QDs/GO, ZnS QDs/g-C3N4, and Gd-doped ZnS QDs/g-C3N4 nanocomposites under visible light.


Subject(s)
Lanthanoid Series Elements , Azo Compounds , Catalysis , Graphite , Light , Sulfides , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...