Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 124: 315-326, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33465507

ABSTRACT

Delivery systems for controlled release of RNA interference (RNAi) molecules, including small interfering (siRNA) and microRNA (miRNA), have the potential to direct stem cell differentiation for regenerative musculoskeletal applications. To date, localized RNA delivery platforms in this area have focused predominantly on bulk scaffold-based approaches, which can interfere with cell-cell interactions important for recapitulating some native musculoskeletal developmental and healing processes in tissue regeneration strategies. In contrast, scaffold-free, high density human mesenchymal stem cell (hMSC) aggregates may provide an avenue for creating a more biomimetic microenvironment. Here, photocrosslinkable dextran microspheres (MS) encapsulating siRNA-micelles were prepared via an aqueous emulsion method and incorporated within hMSC aggregates for localized and sustained delivery of bioactive siRNA. siRNA-micelles released from MS in a sustained fashion over the course of 28 days, and the released siRNA retained its ability to transfect cells for gene silencing. Incorporation of fluorescently labeled siRNA (siGLO)-laden MS within hMSC aggregates exhibited tunable siGLO delivery and uptake by stem cells. Incorporation of MS loaded with siRNA targeting green fluorescent protein (siGFP) within GFP-hMSC aggregates provided sustained presentation of siGFP within the constructs and prolonged GFP silencing for up to 15 days. This platform system enables sustained gene silencing within stem cell aggregates and thus shows great potential in tissue regeneration applications. STATEMENT OF SIGNIFICANCE: This work presents a new strategy to deliver RNA-nanocomplexes from photocrosslinked dextran microspheres for tunable presentation of bioactive RNA. These microspheres were embedded within scaffold-free, human mesenchymal stem cell (hMSC) aggregates for sustained gene silencing within three-dimensional cell constructs while maintaining cell viability. Unlike exogenous delivery of RNA within culture medium that suffers from diffusion limitations and potential need for repeated transfections, this strategy provides local and sustained RNA presentation from the microspheres to cells in the constructs. This system has the potential to inhibit translation of hMSC differentiation antagonists and drive hMSC differentiation toward desired specific lineages, and is an important step in the engineering of high-density stem cell systems with incorporated instructive genetic cues for application in tissue regeneration.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Cell Differentiation , Gene Expression , Gene Silencing , Humans , Microspheres , RNA, Small Interfering/genetics
2.
Cancer Res ; 78(7): 1845-1858, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29358172

ABSTRACT

Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis. Genetic models suggest that selective mTORC2 inhibition would be effective in breast cancers, but the lack of selective small-molecule inhibitors of mTORC2 have precluded testing of this hypothesis to date. Here we report the engineering of a nanoparticle-based RNAi therapeutic that can effectively silence the mTORC2 obligate cofactor Rictor. Nanoparticle-based Rictor ablation in HER2-amplified breast tumors was achieved following intratumoral and intravenous delivery, decreasing Akt phosphorylation and increasing tumor cell killing. Selective mTORC2 inhibition in vivo, combined with the HER2 inhibitor lapatinib, decreased the growth of HER2-amplified breast cancers to a greater extent than either agent alone, suggesting that mTORC2 promotes lapatinib resistance, but is overcome by mTORC2 inhibition. Importantly, selective mTORC2 inhibition was effective in a triple-negative breast cancer (TNBC) model, decreasing Akt phosphorylation and tumor growth, consistent with our findings that RICTOR mRNA correlates with worse outcome in patients with basal-like TNBC. Together, our results offer preclinical validation of a novel RNAi delivery platform for therapeutic gene ablation in breast cancer, and they show that mTORC2-selective targeting is feasible and efficacious in this disease setting.Significance: This study describes a nanomedicine to effectively inhibit the growth regulatory kinase mTORC2 in a preclinical model of breast cancer, targeting an important pathogenic enzyme in that setting that has been undruggable to date. Cancer Res; 78(7); 1845-58. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Lapatinib/pharmacology , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Cell Survival/drug effects , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles , RNA, Small Interfering/genetics , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Receptor, ErbB-2/metabolism , Triple Negative Breast Neoplasms/pathology
3.
Tissue Eng Part C Methods ; 23(11): 754-762, 2017 11.
Article in English | MEDLINE | ID: mdl-28762881

ABSTRACT

Impaired wound healing that mimics chronic human skin pathologies is difficult to achieve in current animal models, hindering testing and development of new therapeutic biomaterials that promote wound healing. In this article, we describe a refinement and simplification of the porcine ischemic wound model that increases the size and number of experimental sites per animal. By comparing three flap geometries, we adopted a superior configuration (15 × 10 cm) that enabled testing of twenty 1 cm2 wounds in each animal: 8 total ischemic wounds within 4 bipedicle flaps and 12 nonischemic wounds. The ischemic wounds exhibited impaired skin perfusion for ∼1 week. To demonstrate the utility of the model for comparative testing of tissue regenerative biomaterials, we evaluated the healing process in wounds implanted with highly porous poly (thioketal) urethane (PTK-UR) scaffolds that were fabricated through reaction of reactive oxygen species (ROS)-cleavable PTK macrodiols with isocyanates. PTK-lysine triisocyanate (LTI) scaffolds degraded significantly in vitro under both oxidative and hydrolytic conditions whereas PTK-hexamethylene diisocyanate trimer (HDIt) scaffolds were resistant to hydrolytic breakdown and degraded exclusively through an ROS-dependent mechanism. Upon placement into porcine wounds, both types of PTK-UR materials fostered new tissue ingrowth over 10 days in both ischemic and nonischemic tissue. However, wound perfusion, tissue infiltration and the abundance of pro-regenerative, M2-polarized macrophages were markedly lower in ischemic wounds independent of scaffold type. The PTK-LTI implants significantly improved tissue infiltration and perfusion compared with analogous PTK-HDIt scaffolds in ischemic wounds. Both LTI and HDIt-based PTK-UR implants enhanced M2 macrophage activity, and these cells were selectively localized at the scaffold/tissue interface. In sum, this modified porcine wound-healing model decreased animal usage, simplified procedures, and permitted a more robust evaluation of tissue engineering materials in preclinical wound healing research. Deployment of the model for a relevant biomaterial comparison yielded results that support the use of the PTK-LTI over the PTK-HDIt scaffold formulation for future advanced therapeutic studies.


Subject(s)
Biocompatible Materials/pharmacology , Ischemia/pathology , Materials Testing , Wound Healing/drug effects , Animals , Blood Vessels/drug effects , Disease Models, Animal , Macrophages/drug effects , Macrophages/metabolism , Skin/blood supply , Surgical Flaps , Sus scrofa , Tissue Scaffolds/chemistry
4.
Proc Natl Acad Sci U S A ; 114(32): E6490-E6497, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28739942

ABSTRACT

Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by siRNA's comprehensively poor pharmacokinetic properties, which necessitate molecule modifications and complex delivery strategies. We sought an alternative approach to commonly used nanoparticle carriers by leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized siRNA conjugated to a diacyl lipid moiety (siRNA-L2), which rapidly binds albumin in situ. siRNA-L2, in comparison with unmodified siRNA, exhibited a 5.7-fold increase in circulation half-life, an 8.6-fold increase in bioavailability, and reduced renal accumulation. Benchmarked against leading commercial siRNA nanocarrier in vivo jetPEI, siRNA-L2 achieved 19-fold greater tumor accumulation and 46-fold increase in per-tumor-cell uptake in a mouse orthotopic model of human triple-negative breast cancer. siRNA-L2 penetrated tumor tissue rapidly and homogeneously; 30 min after i.v. injection, siRNA-L2 achieved uptake in 99% of tumor cells, compared with 60% for jetPEI. Remarkably, siRNA-L2 achieved a tumor:liver accumulation ratio >40:1 vs. <3:1 for jetPEI. The improved pharmacokinetic properties of siRNA-L2 facilitated significant tumor gene silencing for 7 d after two i.v. doses. Proof-of-concept was extended to a patient-derived xenograft model, in which jetPEI tumor accumulation was reduced fourfold relative to the same formulation in the orthotopic model. The siRNA-L2 tumor accumulation diminished only twofold, suggesting that the superior tumor distribution of the conjugate over nanoparticles will be accentuated in clinical situations. These data reveal the immense promise of in situ albumin targeting for development of translational, carrier-free RNAi-based cancer therapies.


Subject(s)
Gene Silencing , Neoplasms , RNA, Small Interfering , Serum Albumin, Human , Cell Line, Tumor , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/pharmacology , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacokinetics , Serum Albumin, Human/pharmacology
5.
ACS Nano ; 11(6): 5680-5696, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28548843

ABSTRACT

Although siRNA-based nanomedicines hold promise for cancer treatment, conventional siRNA-polymer complex (polyplex) nanocarrier systems have poor pharmacokinetics following intravenous delivery, hindering tumor accumulation. Here, we determined the impact of surface chemistry on the in vivo pharmacokinetics and tumor delivery of siRNA polyplexes. A library of diblock polymers was synthesized, all containing the same pH-responsive, endosomolytic polyplex core-forming block but different corona blocks: 5 kDa (benchmark) and 20 kDa linear polyethylene glycol (PEG), 10 kDa and 20 kDa brush-like poly(oligo ethylene glycol), and 10 kDa and 20 kDa zwitterionic phosphorylcholine-based polymers (PMPC). In vitro, it was found that 20 kDa PEG and 20 kDa PMPC had the highest stability in the presence of salt or heparin and were the most effective at blocking protein adsorption. Following intravenous delivery, 20 kDa PEG and PMPC coronas both extended circulation half-lives 5-fold compared to 5 kDa PEG. However, in mouse orthotopic xenograft tumors, zwitterionic PMPC-based polyplexes showed highest in vivo luciferase silencing (>75% knockdown for 10 days with single IV 1 mg/kg dose) and 3-fold higher average tumor cell uptake than 5 kDa PEG polyplexes (20 kDa PEG polyplexes were only 2-fold higher than 5 kDa PEG). These results show that high molecular weight zwitterionic polyplex coronas significantly enhance siRNA polyplex pharmacokinetics without sacrificing polyplex uptake and bioactivity within tumors when compared to traditional PEG architectures.


Subject(s)
Drug Carriers/chemistry , Nanostructures/chemistry , Neoplasms/therapy , Phosphorylcholine/chemistry , Polyethylene Glycols/chemistry , RNA, Small Interfering/administration & dosage , RNAi Therapeutics/methods , Animals , Cell Line, Tumor , Female , Humans , Male , Mice, Nude , Neoplasms/genetics , Polymers/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/therapeutic use , Surface Properties
6.
Adv Healthc Mater ; 5(21): 2751-2757, 2016 11.
Article in English | MEDLINE | ID: mdl-27717176

ABSTRACT

Small interfering RNA (siRNA) delivered from reactive oxygen species-degradable tissue engineering scaffolds promotes diabetic wound healing in rats. Porous poly(thioketal-urethane) scaffolds implanted in diabetic wounds locally deliver siRNA that inhibits the expression of prolyl hydroxylase domain protein 2, thereby increasing the expression of progrowth genes and increasing vasculature, proliferating cells, and tissue development in diabetic wounds.


Subject(s)
Diabetes Mellitus/drug therapy , Procollagen-Proline Dioxygenase/administration & dosage , Procollagen-Proline Dioxygenase/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Animals , Cell Proliferation/drug effects , Hypoxia-Inducible Factor-Proline Dioxygenases , Male , Neovascularization, Physiologic/drug effects , Rats , Rats, Sprague-Dawley , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Biomaterials ; 97: 122-32, 2016 08.
Article in English | MEDLINE | ID: mdl-27163624

ABSTRACT

Formation of stable, long-circulating siRNA polyplexes is a significant challenge in translation of intravenously-delivered, polymeric RNAi cancer therapies. Here, we report that siRNA hydrophobization through conjugation to palmitic acid (siPA) improves stability, in vivo pharmacokinetics, and tumor gene silencing of PEGylated nanopolyplexes (siPA-NPs) with balanced cationic and hydrophobic content in the core relative to the analogous polyplexes formed with unmodified siRNA, si-NPs. Hydrophobized siPA loaded into the NPs at a lower charge ratio (N(+):P(-)) relative to unmodified siRNA, and siPA-NPs had superior resistance to siRNA cargo unpackaging in comparison to si-NPs upon exposure to the competing polyanion heparin and serum. In vitro, siPA-NPs increased uptake in MDA-MB-231 breast cancer cells (100% positive cells vs. 60% positive cells) but exhibited equivalent silencing of the model gene luciferase relative to si-NPs. In vivo in a murine model, the circulation half-life of intravenously-injected siPA-NPs was double that of si-NPs, resulting in a >2-fold increase in siRNA biodistribution to orthotopic MDA-MB-231 mammary tumors. The increased circulation half-life of siPA-NPs was dependent upon the hydrophobic interactions of the siRNA and the NP core component and not just siRNA hydrophobization, as siPA did not contribute to improved circulation time relative to unmodified siRNA when delivered using polyplexes with a fully cationic core. Intravenous delivery of siPA-NPs also achieved significant silencing of the model gene luciferase in vivo (∼40% at 24 h after one treatment and ∼60% at 48 h after two treatments) in the murine MDA-MB-231 tumor model, while si-NPs only produced a significant silencing effect after two treatments. These data suggest that stabilization of PEGylated siRNA polyplexes through a combination of hydrophobic and electrostatic interactions between siRNA cargo and the polymeric carrier improves in vivo pharmacokinetics and tumor gene silencing relative to conventional formulations that are stabilized solely by electrostatic interactions.


Subject(s)
Drug Carriers/chemistry , Gene Silencing , Hydrophobic and Hydrophilic Interactions , Neoplasms/therapy , Palmitic Acid/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , RNA, Small Interfering/pharmacokinetics , Animals , Cell Line, Tumor , Female , Humans , Mice, Nude , Reproducibility of Results , Tissue Distribution
8.
J Control Release ; 218: 94-113, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26476177

ABSTRACT

The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While locally injected or topically applied siRNA has progressed into numerous clinical trials, an enormous opportunity exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation.


Subject(s)
RNA, Small Interfering/administration & dosage , Gene Silencing , RNA, Small Interfering/therapeutic use , Technology, Pharmaceutical
9.
J Biomed Mater Res A ; 103(9): 3107-16, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25641816

ABSTRACT

Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene prolyl hydroxylase domain protein 2 (PHD2) . PA conjugation also significantly increased longevity of silencing activity following a single treatment in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Biocompatible Materials/chemistry , Biological Transport, Active , Endosomes/metabolism , Gene Silencing , HEK293 Cells , Humans , Materials Testing , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Nanoparticles/ultrastructure , Palmitic Acid/chemistry , Polymers/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics
11.
J Biomed Mater Res A ; 100(8): 2204-10, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22623267

ABSTRACT

Endothelial cell (EC) adhesion, shear retention, morphology, and hemostatic gene expression on fibronectin (FN) and RGD fluorosurfactant polymer (FSP)-coated expanded polytetrafluoroethylene grafts were investigated using an in vitro perfusion system. ECs were sodded on both types of grafts and exposed to 8 dyn/cm(2) of shear stress. After 24 h, the EC retention on RGD-FSP-coated grafts was 59 ± 14%, which is statistically higher than the 36 ± 11% retention measured on FN grafts (p < 0.02). Additionally, ECs on RGD-FSP exhibited a more spread morphology and oriented in the direction of shear stress, as demonstrated by actin fiber staining. This spread morphology has been observed earlier in cells that are adapting to shear stress. Real-time PCR for vascular cell adhesion molecule 1, tissue factor, tissue plasminogen activator, and inducible nitric oxide synthase indicated that the RGD-FSP material did not activate the cells and that shear stress appears to induce a more vasoprotective phenotype, as shown by a significant decrease in VCAM-1 expression, compared with sodded grafts. RGD-FSP-coating allows for a cell layer that is more resistant to physiological shear stress, as shown by the increased cell retention over FN. This shear stable EC layer is necessary for in vivo endothelialization of the graft material, which shows promise to increase the patency of synthetic small diameter vascular grafts.


Subject(s)
Biomimetic Materials/chemistry , Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Endothelial Cells/cytology , Polytetrafluoroethylene/pharmacology , Stress, Mechanical , Actin Cytoskeleton/metabolism , Biomimetic Materials/pharmacology , Cell Adhesion/drug effects , Cell Shape/drug effects , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Microscopy, Fluorescence , Oligopeptides/pharmacology , Perfusion , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Surface-Active Agents/pharmacology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...