Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Langmuir ; 35(1): 70-77, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30525645

ABSTRACT

Metal pretreatment is typically the first step in a reliable corrosion protection system. This work explores the incorporation of complexes between the cyclic oligosaccharide ß-cyclodextrin (ß-CD) and the molecular organic corrosion inhibitor 2-mercaptobenzothiazole (MBT) into an oxide-based pretreatment layer on metallic zinc. The layers were produced by a precorrosion step in the presence of ß-CD. The resulting films have a morphology dominated by spherical particles. X-ray photoelectron spectroscopy investigations of the surfaces show the sulfur atoms of MBT to be partially oxidized but mostly intact. Samples pretreated with such a layer were subsequently coated with a model polymer coating, and the delamination of this model coating from an artificial defect was monitored by a scanning Kelvin probe (SKP). The SKP results show a slow down of delamination after several hours of the ongoing corrosion process for surfaces pretreated with the complexes. Finally, an increase in the electrode potential in the defect was observed, with a subsequent complete stop in delamination and repassivation of the defect after ≈10 h. This repassivation is attributed to the release of MBT after the initiation of the corrosion process. Most likely, the increase of pH, combined with the availability of aqueous solution, facilitates the MBT release after the initiation of a corrosion process. Consequently, complexes formed from ß-CD and corrosion inhibitors can be effectively incorporated into inorganic pretreatments, and the inhibitor component can be released upon start of the corrosion process.

2.
Beilstein J Nanotechnol ; 9: 936-944, 2018.
Article in English | MEDLINE | ID: mdl-29600153

ABSTRACT

Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide ß-cyclodextrin (ß-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of ß-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact ß-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the ß-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n-p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals.

3.
Nanoscale Horiz ; 3(1): 58-65, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-32254111

ABSTRACT

ZnO nanorods were grown on a zinc substrate via cathodic delamination of a polymer coating, a tailored corrosion process, at room temperature. A comparison between in situ Raman spectra and post mortem cross sectional analysis by Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy shows that in the initial stages of the synthesis, preferentially defect rich ZnO grows. At later stages, crystalline wurtzite ZnO growth dominates. The result is nanorod arrays consisting of nanorods with a large density of point defects in the ≈500 nm range near the zinc substrate, and low defect density in the regions further away from the interface. The growth, which proceeds over several hours, can be interrupted at any time. Large salt concentrations in the corrosive medium increase the growth rate, but also the amount of point defects. The resulting rods show strongly position-dependent luminescence and Raman spectra. Different luminescence can thus be selectively excited, based on the position of excitation.

4.
Phys Chem Chem Phys ; 19(19): 11816-11824, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28470285

ABSTRACT

A tin oxide/copper phthalocyanine (CuPc) layer stack was investigated with two complementary photoemission methods. Non-destructive analysis of the electronic properties at the SnOx/CuPc interface was performed applying angle-dependent measurements with X-ray photoelectron spectroscopy (ADXPS) and energy-resolved photoemission yield spectroscopy (PYS). The different components (related to oxide layer and organic overlayer as well as to contamination features) observed in the spectra were assigned to a particular layer by relative depth plot analysis. ADXPS allowed determination of the chemical and electronic structure of the investigated samples. The addition of the organic ultra-thin film to the oxide layer caused a significant increase of the structure's photoemission yield. The combination of ADXPS and PYS allowed determination of the work function of constituent layers, and charge transfer phenomena at the SnOx/CuPc buried interface. An interface dipole of 0.23 eV was detected, assigned to charge transfer across the interface from the oxide layer towards the organic film. The energy level alignment at the SnOx/CuPc interface was determined, and presented in a band-like diagram, together with depth-dependent changes of the core energy levels of the structure's constituents. Finally the role of the oxide's defect-related energy levels in the charge transfer was discussed. The results obtained exhibit significance ranging from investigation, basic understanding and application of such hybrid films. Application of these results in hybrid electronic devices can help understanding and furthering this technology.

5.
Phys Chem Chem Phys ; 17(47): 31670-9, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26555893

ABSTRACT

The widely used engineering material copper is a prototype of an electrochemically passive metal. In this work, the passive films on evaporated copper in 0.1 M NaOH are investigated in situ and operando by spectroscopic ellipsometry and Raman spectroscopy, both conducted during oxidation in potentiostatic step experiments. Oxide growth is initiated by jumping from a potential at which the surface is oxide-free to -0.1 V vs. Ag|AgCl|3 M KCl (+0.11 V vs. standard hydrogen electrode, SHE). At subsequent electrode potential jumps, no corresponding jumps in the thickness are observed; instead, oxide growth proceeds steadily. Above +0.3 V vs. Ag|AgCl|3 M KCl (+0.51 V vs. SHE), the oxide layer thickness remains constant at ≈7 nm. Raman spectra show a peak at 530 cm(-1), which agrees with the dominant peak in spectra of copper mixed oxide, Cu4O3 (Cu2(I)Cu2(II)O3). Crystalline Cu4O3 nucleates from a precursor state showing strong photoluminescence (PL), which hints at the involvement of Cu2O. Overall, the PL spectra of the growing oxide and absorption spectra indicate the presence of Cu2O in the thin films. Absorption spectra cannot be understood as a superposition of the spectra from different well-described copper oxides, which points to defect-rich oxides that show rather different spectra. Raman spectra also point to an involvement of both crystalline and amorphous oxides that coexist. The results show that the passive layers on copper are more complex than the duplex layers described in the literature; they do contain an oxide with a mixed valency of copper.

6.
Chem Commun (Camb) ; 51(89): 16041-4, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26344142

ABSTRACT

After passage of a delamination front at a polymer/zinc interface, pH oscillations and oscillations in the quantity of corrosion products are observed. The reason for these oscillations is the low quantity of water in the confined reaction volume, water consumption by oxygen reduction, and water regeneration after precipitation of ZnO.

7.
Langmuir ; 31(26): 7306-16, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26057456

ABSTRACT

Phenothiazines are redox-active, fluorescent molecules with potential applications in molecular electronics. Phosphonated phenylethynyl phenothiazine can be easily obtained in a four-step synthesis, yielding a molecule with a headgroup permitting surface linkage. Upon modifying hydroxylated polycrystalline zinc and iron, both covered with their respective native oxides, ultrathin organic layers were formed and investigated by use of infrared (IR) reflection spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), contact angle measurement, and ellipsometry. While stable monolayers with upright oriented organic molecules were formed on oxide-covered iron, multilayer formation is observed on oxide-covered zinc. ToF-SIMS measurements reveal a bridging bidentate bonding state of the organic compound on oxide-covered iron, whereas monodentate complexes were observed on oxide-covered zinc. Both organically modified and unmodified surfaces exhibit reactive wetting, but organic modification makes the surfaces initially more hydrophobic. Cyclic voltammetry (CV) indicates redox activity of the multilayers formed on oxide-covered zinc. On the other hand, the monolayers on oxide-covered iron desorb after electrochemical modifications in the state of the oxide, but are stable at open circuit conditions. Exploiting an electronic coupling of phenothiazines to oxides may thus assist in corrosion protection.

8.
Phys Chem Chem Phys ; 17(15): 10004-13, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25785505

ABSTRACT

In the present work, thin ZnO layers were synthesized by the sol-gel method with subsequent spin-coating on Si(100). We show that the detailed analysis of lab-recorded photoemission spectra in combination with Kelvin probe data yielded the work function, ionization energy, and valence band - Fermi level separation - and hence enabled the construction of band diagrams of the examined layers. With small modifications in preparation, very different films can be obtained. One set shows a homogeneous depth-dependent n carrier distribution, and another a significant carrier concentration gradient from n-type conductivity to almost metal-like n(+) character. Likewise, the surface morphology can be tuned from a uniform, compact surface with spherical single-nm sized grain-like features to a structured surface with 5-10 nm tall crystallites with (002) dominating crystal orientation. Based on the band-bending and the energy levels observed, defects of contradictory nature, i.e. acceptor-donor-trap (ADT) properties, were identified. These defects may be groups of point defects, with opposite character. The ADT states affect the energy levels of the oxide layers and due to their nature cannot be considered in the photoemission experiment as mutually independent. The versatile nature of the synthesis provides us with the opportunity to tune the properties with a high degree of freedom, at low processing costs, yielding layers with an exotic electronic structure. Such layers are interesting candidates for applications in photovoltaic and nanoelectronic devices.

9.
ACS Appl Mater Interfaces ; 6(21): 18728-34, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25278370

ABSTRACT

Many photocatalyst systems catalyze chemical reactions under ultraviolet (UV) illumination, because of its high photon energies. Activating inexpensive, widely available materials as photocatalyst using the intense visible part of the solar spectrum is more challenging. Here, nanorod arrays of the wide-band-gap semiconductor zinc oxide have been shown to act as photocatalysts for the aerobic photo-oxidation of organic dye Methyl Orange under illumination with red light, which is normally accessible only to narrow-band semiconductors. The homogeneous, 800-1000-nm-thick ZnO nanorod arrays show substantial light absorption (absorbances >1) throughout the visible spectral range. This absorption is caused by defect levels inside the band gap. Multiple scattering processes by the rods make the nanorods appear black. The dominantly crystalline ZnO nanorod structures grow in the (0001) direction, i.e., with the c-axis perpendicular to the surface of polycrystalline zinc. The room-temperature preparation route relies on controlled cathodic delamination of a weakly bound polymer coating from metallic zinc, an industrially produced and cheaply available substrate. Cathodic delamination is a sequential synthesis process, because it involves the propagation of a delamination front over the base material. Consequently, arbitrarily large sample surfaces can be nanostructured using this approach.

10.
ACS Appl Mater Interfaces ; 6(20): 18112-21, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25232896

ABSTRACT

Polymer coatings are widely used to protect metals from corrosion. Coating adhesion to the base material is critical for good protection, but coatings may fail because of cathodic delamination. Most of the experimental studies on cathodic delamination use polymers to study the corrosion behavior under conditions where the interfacial chemistry at the metal(oxide)/polymer interface is not well-defined. Here, ultrathin linear and cross-linked poly(methyl methacrylate) [PMMA] coatings that are covalently bound to oxide-covered zinc via a silane linker have been prepared. For preparation, zinc was functionalized with vinyltrimethoxysilane (VTS), yielding a vinyl monomer-covered surface. These samples were subjected to thermally initiated free radical polymerization in the presence of methyl methacrylate (MMA) to yield surface-bound ultrathin PMMA films of 10-20 nm thickness, bound to the surface via Zn-O-Si bonds. A similar preparation was also carried out in the presence of different amounts of the cross-linkers ethylene glycol diacrylate and hexanediol diacrylate. Functionalized and polymer-coated zinc samples were characterized by infrared (IR) spectroscopy, secondary ion mass spectrometry (SIMS), ellipsometry, and X-ray photoelectron spectroscopy (XPS). Coating stability toward cathodic delamination has been evaluated by scanning Kelvin probe (SKP) experiments. In all cases, the covalently linked coatings show lower delamination rates of 0.02-0.2 mm h(-1) than coatings attached to the surface without covalent bonds (rates ∼10 mm h(-1)). Samples with a higher fraction of cross-linker delaminate slower, with rates down to 0.03-0.04 mm h(-1), compared to ∼0.3 mm h(-1) without cross-linker. Samples with longer hydrophobic alkyl chains also delaminate slower, with the lowest observed delamination rate of 0.028 mm h(-1) using hexanediol diacrylate. For the coatings studied here, delamination kinetics is not diffusion limited, but the rate is controlled by a chemical reaction. Several possibilities for the nature of this reaction are discussed; radical side reactions of the oxygen reduction are the most likely path of deadhesion.

11.
Chemistry ; 20(19): 5752-61, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24677350

ABSTRACT

Modified acrylate polymers are able to effectively exfoliate and stabilize pristine graphene nanosheets in aqueous media. Starting with pre-exfoliated graphite greatly promotes the exfoliation level. The graphene concentration is significantly increased up to 11 mg mL(-1) by vacuum evaporation of the solvent from the dispersions under ambient temperature. TEM shows that 75 % of the flakes have fewer than five layers with about 18 % of the flakes consisting of monolayers. Importantly, a successive centrifugation and redispersion strategy is developed to enable the formation of dispersions with exceptionally high graphene-to-stabilizer ratio. Characterization by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy shows the flakes to be of high quality with very low levels of defects. These dispersions can act as a scaffold for the immobilization of enzymes applied, for example, in glucose oxidation. The electrochemical current density was significantly enhanced to be approximately six times higher than an electrode in the absence of graphene, thus showing potential applications in enzymatic biofuel cells.


Subject(s)
Acrylates/chemistry , Enzymes, Immobilized/chemistry , Glucose/chemistry , Graphite/chemistry , Electrochemistry , Oxidation-Reduction , X-Ray Diffraction
12.
Anal Bioanal Chem ; 404(6-7): 2087-90, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22895738

ABSTRACT

The dissolution of the primary nucleobases in supercritical fluids has been investigated using pulsed molecular beam mass spectrometry. Due to the low critical temperatures of ethylene and carbon dioxide, their adiabatic jet expansion permits transferring thermally sensitive solutes into the gas phase. This feature is particularly attractive for pharmaceutical and biomedical applications. In this study, adenine, guanine, cytosine, thymine, and uracil have been dissolved in supercritical ethylene with a few percent of ethanol as cosolvent. At source temperatures of 313 K, these solutions have been expanded from supercritical pressures into high vacuum using a customized pulsed nozzle. A mass spectrometer was used to monitor the relative amounts of solute, solvent, and cosolvent in the supersonic beam. The results suggest a paramount influence of the cosolvent.


Subject(s)
Mass Spectrometry/methods , Pharmaceutical Preparations/analysis , Mass Spectrometry/instrumentation , Nucleotides/chemistry
13.
Angew Chem Int Ed Engl ; 51(20): 4993-6, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22492533

ABSTRACT

Setting cement: highly dynamic hydration processes that occur during the first seconds of cement hydration were studied by time-resolved synchrotron X-ray diffraction. Polycarboxylate ether additives were found to influence the formation of the initial crystalline hydration products on a molecular level.

14.
Chem Commun (Camb) ; 47(33): 9369-71, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21769334

ABSTRACT

We report the spontaneous formation of a clathrate hydrate in a suspended droplet at ambient conditions. A novel method for producing and stabilizing clathrates for analytical studies is described.

SELECTION OF CITATIONS
SEARCH DETAIL
...