Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 15(2): 733-752, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38389871

ABSTRACT

In this study, novel morpholinopyrimidine-5-carbonitriles were designed and synthesized as dual PI3K/mTOR inhibitors and apoptosis inducers. The integration of a heterocycle at position 2, with or without spacers, of the new key intermediate 2-hydrazinyl-6-morpholinopyrimidine-5-carbonitrile (5) yielded compounds 6-10, 11a-c and 12a-h. The National Cancer Institute (USA) tested all compounds for antiproliferative activity. Schiff bases, 12a-h analogs, were the most active ones. The most promising compounds 12b and 12d exhibited excellent antitumor activity against the leukemia SR cell line, which is the most sensitive cell line, with IC50 0.10 ± 0.01 and 0.09 ± 0.01 µM, respectively, along with significant effects on PI3Kα/PI3Kß/PI3Kδ with IC50 values of 0.17 ± 0.01, 0.13 ± 0.01 and 0.76 ± 0.04 µM, respectively, for 12b and 1.27 ± 0.07, 3.20 ± 0.16 and 1.98 ± 0.11, respectively, for 12d compared to LY294002. Compared to Afinitor, these compounds inhibited mTOR with IC50 values of 0.83 ± 0.05 and 2.85 ± 0.17 µM, respectively. Annexin-V and propidium iodide (PI) double labeling showed that compounds 12b and 12d promote cytotoxic leukemia SR apoptosis. Compounds 12b and 12d also caused a G2/M cell cycle arrest in the leukaemia SR cell line. The findings of this study indicate that the highest effect was observed for 12b, which was supported by western blot and docking analysis.

2.
Eur J Med Chem ; 66: 276-95, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23811090

ABSTRACT

Some novel pyrimidine-5-carbonitrile derivatives bearing various substituent have been synthesized. The structures of target compounds were confirmed by elemental analysis and spectral data. Some selected members of the newly synthesized compounds were investigated for their cytotoxic potency against certain human tumor cell lines. Five representative active anticancer compounds 6a, 6c, 6d, 17a and 18a were subjected to docking using MOE program on the 3D structure of two enzymes, namely; thymidylate synthase and dihydrofolate reductase. The antimicrobial activities of the synthesized compounds were tested against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella flexneri and Candida albicans. Compounds 2c, 7a and 9c showed broad spectrum antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Bacteria/drug effects , Candida albicans/drug effects , Catalytic Domain , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Pyrimidines/chemistry , Pyrimidines/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Thymidylate Synthase/chemistry , Thymidylate Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...