Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 59(5): 1408-18, 2012 May.
Article in English | MEDLINE | ID: mdl-22361654

ABSTRACT

This paper presents an automated video analysis framework for the detection of colonic polyps in optical colonoscopy. Our proposed framework departs from previous methods in that we include spatial frame-based analysis and temporal video analysis using time-course image sequences. We also provide a video quality assessment scheme including two measures of frame quality. We extract colon-specific anatomical features from different image regions using a windowing approach for intraframe spatial analysis. Anatomical features are described using an eigentissue model. We apply a conditional random field to model interframe dependences in tissue types and handle variations in imaging conditions and modalities. We validate our method by comparing our polyp detection results to colonoscopy reports from physicians. Our method displays promising preliminary results and shows strong invariance when applied to both white light and narrow-band video. Our proposed video analysis system can provide objective diagnostic support to physicians by locating polyps during colon cancer screening exams. Furthermore, our system can be used as a cost-effective video annotation solution for the large backlog of existing colonoscopy videos.


Subject(s)
Colonic Polyps/diagnosis , Colonoscopy/methods , Image Interpretation, Computer-Assisted/methods , Algorithms , Humans , Pattern Recognition, Automated/methods
2.
IEEE Trans Med Imaging ; 30(3): 867-78, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21245006

ABSTRACT

This paper presents a domain-specific automated image analysis framework for the detection of pre-cancerous and cancerous lesions of the uterine cervix. Our proposed framework departs from previous methods in that we include domain-specific diagnostic features in a probabilistic manner using conditional random fields. Likewise, we provide a novel window-based performance assessment scheme for 2D image analysis which addresses the intrinsic problem of image misalignment. Image regions corresponding to different tissue types are indentified for the extraction of domain-specific anatomical features. The unique optical properties of each tissue type and the diagnostic relationships between neighboring regions are incorporated in the proposed conditional random field model. The validity of our method is examined using clinical data from 48 patients, and its diagnostic potential is demonstrated by a performance comparison with expert colposcopy annotations, using histopathology as the ground truth. The proposed automated diagnostic approach can support or potentially replace conventional colposcopy, allow tissue specimen sampling to be performed in a more objective manner, and lower the number of cervical cancer cases in developing countries by providing a cost effective screening solution in low-resource settings.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Uterine Cervical Neoplasms/pathology , Female , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...