Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328145

ABSTRACT

Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.

2.
Dis Model Mech ; 15(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36037073

ABSTRACT

The lack of genetically diverse preclinical animal models in basic biology and efficacy testing has been cited as a potential cause of failure in clinical trials. We developed and characterized five diverse RAG1 null mouse strains as models that allow xenografts to grow. In these strains, we characterized the growth of breast cancer, leukemia and glioma cell lines. We found a wide range of growth characteristics that were far more dependent on strain than tumor type. For the breast cancer cell line, we characterized the spectrum of xenograft/tumor growth at structural, histological, cellular and molecular levels across each strain, and found that each strain captures unique structural components of the stroma. Furthermore, we showed that the increase in tumor-infiltrating myeloid CD45+ cells and the amount of circulating cytokine IL-6 and chemokine KC (also known as CXCL1) is associated with a higher tumor size in different strains. This resource is available to study established human xenografts, as well as difficult-to-xenograft tumors and growth of hematopoietic stems cells, and to decipher the role of myeloid cells in the development of spontaneous cancers.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Heterografts , Humans , Mice , Mice, Knockout , Transplantation, Heterologous , Xenograft Model Antitumor Assays
3.
Genes Cancer ; 11(1-2): 83-94, 2020.
Article in English | MEDLINE | ID: mdl-32577159

ABSTRACT

Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin's-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.

SELECTION OF CITATIONS
SEARCH DETAIL
...