Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 13(9): 2472-2483, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33005235

ABSTRACT

Biological control is a popular tool for invasive species management, but its success in nature is difficult to predict. One risk is that invasive plants, which may have adapted to lower herbivore pressure in the introduced range, could rapidly evolve defences upon re-association with their biocontrol agent(s). Previous studies have demonstrated that populations of the invasive plant purple loosestrife (Lythrum salicaria) exposed to biocontrol exhibit traits consistent with the rapid evolution of defence. However, to date, no one has tested this hypothesis under field-natural levels of herbivory. Using seed from 17 populations of purple loosestrife growing in eastern Canada, that varied in their history of exposure to their biocontrol agent, the leaf beetle Neogalerucella spp., we transplanted 1,088 seedlings from 136 maternal families into a common garden under ambient herbivory. Over the following three and half years, we assessed plant performance in the face of biocontrol by measuring early-season plant size, defoliation, flowering, and season-end biomass. We discovered that a population history with biocontrol explained little variation in herbivory or plant performance, suggesting that adaptation is not hindering biocontrol effectiveness. Instead, plant size, subsequent defoliation, and spatio-temporal variables were the main predictors of plant growth and flowering during the study. The high individual variability we observed in plant performance underscores that flexible strategies of allocation and phenology are important contributors to the persistence of invasive plants. Our findings suggest that plant adaptation to biocontrol is unlikely to be a strong impediment to biological control in this species, however, the high survival and variable defoliation of plants in our study also indicate that biocontrol alone is unlikely to result in significant population decline. We recommend that the application of multiple forms of control simultaneously (e.g. thinning plus biocontrol) could help to prevent the existence of refuges of large, reproductive individuals.

2.
J Evol Biol ; 30(5): 1042-1052, 2017 05.
Article in English | MEDLINE | ID: mdl-28370749

ABSTRACT

We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes.


Subject(s)
Biological Evolution , Herbivory , Introduced Species , Lythrum , Animals , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...