Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20232023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041858

ABSTRACT

As one of the leading causes for dementia in the population, it is imperative that we discern exactly why Alzheimer's disease (AD) has a strong molecular association with beta-amyloid and tau. Although a clear understanding about etiology and pathogenesis of AD remains unsolved, scientists worldwide have dedicated significant efforts to discovering the molecular interactions linked to the pathological characteristics and potential treatments. Knowledge representations, such as domain ontologies encompassing our current understanding about AD, could greatly assist and contribute to disease research. This paper describes the construction and application of the integrated Alzheimer's Disease Ontology (ADO), combining selected concepts from the former version of the ADO and the Alzheimer's Disease Mapping Ontology (ADMO). In addition to the existing entities available from these knowledge models, essential knowledge about AD from public sources, such as newly discovered risk factor genes and novel treatments, was also integrated. The ADO can also be leveraged in text mining scenarios given that it is conceptually enriched with domain-specific knowledge as well as their relations. The integrated ADO consists of 39 855 total axioms. The ontology covers many aspects of the AD domain, including risk factor genes, clinical features, treatments and experimental models. The ontology complies with the Open Biological and Biomedical Ontology principles and was accepted by the foundry. In this paper, we illustrate the role of the presented ontology in extracting textual information from the SCAIView database and key measures in an ADO-based corpus. Database URL:  https://academic.oup.com/database.


Subject(s)
Alzheimer Disease , Biological Ontologies , Humans , Alzheimer Disease/genetics , Data Mining
2.
Bioinform Adv ; 3(1): vbad033, 2023.
Article in English | MEDLINE | ID: mdl-37016683

ABSTRACT

Motivation: Epilepsy is a multifaceted complex disorder that requires a precise understanding of the classification, diagnosis, treatment and disease mechanism governing it. Although scattered resources are available on epilepsy, comprehensive and structured knowledge is missing. In contemplation to promote multidisciplinary knowledge exchange and facilitate advancement in clinical management, especially in pre-clinical research, a disease-specific ontology is necessary. The presented ontology is designed to enable better interconnection between scientific community members in the epilepsy domain. Results: The Epilepsy Ontology (EPIO) is an assembly of structured knowledge on various aspects of epilepsy, developed according to Basic Formal Ontology (BFO) and Open Biological and Biomedical Ontology (OBO) Foundry principles. Concepts and definitions are collected from the latest International League against Epilepsy (ILAE) classification, domain-specific ontologies and scientific literature. This ontology consists of 1879 classes and 28 151 axioms (2171 declaration axioms, 2219 logical axioms) from several aspects of epilepsy. This ontology is intended to be used for data management and text mining purposes. Availability and implementation: The current release of the ontology is publicly available under a Creative Commons 4.0 License and shared via http://purl.obolibrary.org/obo/epso.owl and is a community-based effort assembling various facets of the complex disease. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/EPIO. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
Article in English | MEDLINE | ID: mdl-36462601

ABSTRACT

Schizophrenia and bipolar disorder are characterized by highly similar neuropsychological signatures, implying shared neurobiological mechanisms between these two disorders. These disorders also have comorbidities, such as type 2 diabetes mellitus (T2DM). To date, an understanding of the mechanisms that mediate the link between these two disorders remains incomplete. In this work, we identify and investigate shared patterns across multiple schizophrenia, bipolar disorder and T2DM gene expression datasets through multiple strategies. Firstly, we investigate dysregulation patterns at the gene-level and compare our findings against disease-specific knowledge graphs (KGs). Secondly, we analyze the concordance of co-expression patterns across datasets to identify disease-specific as well as common pathways. Thirdly, we examine enriched pathways across datasets and disorders to identify common biological mechanisms between them. Lastly, we investigate the correspondence of shared genetic variants between these two disorders and T2DM as well as the disease-specific KGs. In conclusion, our work reveals several shared candidate genes and pathways, particularly those related to the immune system, such as TNF signaling pathway, IL-17 signaling pathway and NF-kappa B signaling pathway and nervous system, such as dopaminergic synapse and GABAergic synapse, which we propose mediate the link between schizophrenia and bipolar disorder and its shared comorbidity, T2DM.


Subject(s)
Bipolar Disorder , Diabetes Mellitus, Type 2 , Schizophrenia , Humans , Bipolar Disorder/psychology , Schizophrenia/epidemiology , Schizophrenia/genetics , Comorbidity , Signal Transduction
4.
Bioinformatics ; 38(15): 3850-3852, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35652780

ABSTRACT

MOTIVATION: The importance of clinical data in understanding the pathophysiology of complex disorders has prompted the launch of multiple initiatives designed to generate patient-level data from various modalities. While these studies can reveal important findings relevant to the disease, each study captures different yet complementary aspects and modalities which, when combined, generate a more comprehensive picture of disease etiology. However, achieving this requires a global integration of data across studies, which proves to be challenging given the lack of interoperability of cohort datasets. RESULTS: Here, we present the Data Steward Tool (DST), an application that allows for semi-automatic semantic integration of clinical data into ontologies and global data models and data standards. We demonstrate the applicability of the tool in the field of dementia research by establishing a Clinical Data Model (CDM) in this domain. The CDM currently consists of 277 common variables covering demographics (e.g. age and gender), diagnostics, neuropsychological tests and biomarker measurements. The DST combined with this disease-specific data model shows how interoperability between multiple, heterogeneous dementia datasets can be achieved. AVAILABILITY AND IMPLEMENTATION: The DST source code and Docker images are respectively available at https://github.com/SCAI-BIO/data-steward and https://hub.docker.com/r/phwegner/data-steward. Furthermore, the DST is hosted at https://data-steward.bio.scai.fraunhofer.de/data-steward. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Dementia , Semantics , Humans , Software , Dementia/diagnosis
5.
Bioinformatics ; 36(24): 5703-5705, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33346828

ABSTRACT

MOTIVATION: The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. RESULTS: The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. AVAILABILITYAND IMPLEMENTATION: COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELECTION OF CITATIONS
SEARCH DETAIL
...