Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(6)2022 05 26.
Article in English | MEDLINE | ID: mdl-35741710

ABSTRACT

Introduction: The prognosis of chronic myeloid leukemia (CML) patients has been dramatically improved with the introduction of imatinib (IM), the first tyrosine kinase inhibitor (TKI). TKI resistance is a serious problem in IM-based therapy. The human S-phase kinase-associated protein 2 (SKP2) gene may play an essential role in the genesis and progression of CML. Aim of the study: We try to explore the diagnostic/prognostic impact of SKP2 gene expression to predict treatment response in first-line IM-treated CML patients at an early response stage. Patients and methods: The gene expression and protein levels of SKP2 were determined using quantitative RT-PCR and ELISA in 100 newly diagnosed CML patients and 100 healthy subjects. Results: SKP2 gene expression and SKP2 protein levels were significantly upregulated in CML patients compared to the control group. The receiver operating characteristic (ROC) analysis for the SKP2 gene expression level, which that differentiated the CML patients from the healthy subjects, yielded a sensitivity of 86.0% and a specificity of 82.0%, with an area under the curve (AUC) of 0.958 (p < 0.001). The ROC analysis for the SKP2 gene expression level, which differentiated optimally from the warning/failure responses, yielded a sensitivity of 70.59% and a specificity of 71.21%, with an AUC of 0.815 (p < 0.001). Conclusion: The SKP2 gene could be an additional diagnostic and an independent prognostic marker for predicting treatment responses in first-line IM-treated CML patients at an early time point (3 months).


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , S-Phase Kinase-Associated Proteins/genetics , Gene Expression , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/pharmacology
2.
Article in English | MEDLINE | ID: mdl-31544705

ABSTRACT

OBJECTIVE: The present study was designed to investigate the effects of renin angiotensin system (RAS) blockade on cardiac arrhythmias and sympathetic nerve remodelling in heart tissues of type 2 diabetic rats. METHODS: Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group: normal rats, b) DM group; after type 2 diabetes induction, rats received 2ml oral saline daily for 4 weeks, c) DM+ ACEi: after type 2 diabetes induction, rats were treated with enalapril (10 mg/kg, orally for 4 weeks) and d) DM+ ARBs: after type 2 diabetes induction, rats were treated with losartan (30 mg/kg, orally for 4 weeks). RESULTS: In type 2 diabetic rats, the results demonstrated significant prolongation in Q-T interval and elevation of blood sugar, HOMA-IR index, TC, TGs, LDL, serum CK-MB, myocardial damage, myocardial MDA, myocardial norepinephrine and tyrosine hydroxylase (TH) density with significant reduction in serum HDL, serum insulin and myocardial GSH and CAT. On the other hand, blockade of RAS at the level of either ACE by enalapril or angiotensin (Ag) receptors by losartan resulted in significant improvement in ECG parameters (Q-T), cardiac enzymes (CK-MB), cardiac morphology, myocardial oxidative stress (low MDA, high CAT and GSH) and myocardial TH density. CONCLUSION: RAS plays a role in the cardiac sympathetic nerve sprouting and cardiac arrhythmias induced by type 2 DM and its blockade might have a cardioprotective effect via attenuation of sympathetic nerve fibres remodelling, myocardial norepinephrine contents and oxidative stress.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Arrhythmias, Cardiac/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Renin-Angiotensin System/physiology , Sympathetic Nervous System/physiopathology , Angiotensin Receptor Antagonists/pharmacology , Animals , Arrhythmias, Cardiac/drug therapy , Blood Pressure/drug effects , Blood Pressure/physiology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Electrocardiography/methods , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Renin-Angiotensin System/drug effects , Sympathetic Nervous System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...