Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Water Environ Res ; 94(7): e10755, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35789513

ABSTRACT

The Fenton and photo-Fenton oxidation processes (FOP and PFOP) are usually applied as a secondary unit process, and direct usage of both processes is critical in textile wastewater treatment. There is seldom study on the direct application of the FOP or PFOP showing the treatment of raw textile industry wastewaters. This study demonstrates the application and comparison of both FOP and PFOP as single units separately for the treatment of wastewater in a textile industry producing woven fabrics. In both processes, the highest treatment efficiency was achieved at pH 3. Chemical oxygen demand (COD), suspended solids (SS), and color parameters in FOP reduced from 1341 to 254 mg/L, 99.5 to 19.9 mg/L, and 1396 to 97.7 Pt-Co, respectively. Separately, in the PFOP, 365-nm wavelength UV radiation sources have been used. In PFOP, the same parameters were reduced from 715 to 42.9 mg/L, 90 to 9 mg/L, and 2080 to 83.2 Pt-Co, respectively. These results were obtained at 0.7 g Fe2+ /L and 2 mM H2 O2 concentrations in both studies. PFOP can meet the textile industry receiving environment discharge standards of many countries, especially in Turkey. The use of PFOP as a single unit is possible in the treatment of textile industry wastewater without primary precipitation. The findings in this study may be practical for the adaptation of the processes on the field scale. PRACTITIONER POINTS: There is seldom study on the direct application of Fenton or photo-Fenton processes as a single unit to raw textile wastewaters This study shows the application of the Fenton or photo-Fenton processes as single units for the treatment of raw wastewater in a textile industry Results of both processes in this study meet the discharge standards of many countries Evaluations of efficiencies of both processes were achieved This study may be the focus of attention of treatment plant operators and researchers.

2.
J Environ Manage ; 92(9): 2250-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21592647

ABSTRACT

Chemical fractionation of seven heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) was studied using a modified three-step sequential procedure to assess their impacts in the sediments of the Seyhan River, Turkey. Samples were collected from six representative stations in two campaigns in October 2009 and June 2010, which correspond to the wet and dry seasons, respectively. The total metal concentrations in the sediments demonstrated different distribution patterns at the various stations. Cadmium was the only metal that was below detection at all stations during both sampling periods. Metal fractionation showed that, except for Mn and Pb, the majority of metals were found in the residual fraction regardless of sampling time, indicating that these metals were strongly bound to the sediments. The potential mobility of the metals (non-residual fractions) is reflected in the following ranking: Pb > Mn > Zn > Cu > Ni > Cr in October 2009 and Mn > Pb > Zn > Cu > Ni > Cr in June 2010. The second highest proportion of metals was bound to organic matter/sulfides, originating primarily from anthropogenic activities. Non-residual metal fractions for all stations were highest in June 2010, which may be linked to higher organic matter concentrations in the sediment samples with 1.40% and 15.1% in October 2009 and June 2010, respectively. Potential sediment toxicity was evaluated using the Risk Assessment Code (RAC). Based on RAC classification, Cd and Cr pose no risk, Cu and Ni pose low risk, Pb and Zn were classified as medium risk metals, while the environmental risk from Mn was high. In addition, based on the sediment quality guidelines (SQG), the Seyhan River can be classified as a river with no, to moderate, toxicological risks, based on total metal concentrations.


Subject(s)
Fresh Water/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Rivers , Turkey
3.
J Hazard Mater ; 174(1-3): 763-9, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19880247

ABSTRACT

The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25+/-2 degrees C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25+/-2 degrees C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching>ferric chloride leaching>sulfuric acid leaching. These results suggest that bioleaching may be an alternative or adjunct to conventional physicochemical treatment of dewatered metal plating sludge for the removal hazardous heavy metals.


Subject(s)
Acidithiobacillus/metabolism , Metals, Heavy/isolation & purification , Sewage , Water Pollutants, Chemical/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Metals, Heavy/metabolism , Particle Size , Spectrophotometry, Atomic , Water Pollutants, Chemical/metabolism
4.
Turkiye Parazitol Derg ; 29(2): 63-7, 2005.
Article in Turkish | MEDLINE | ID: mdl-17160826

ABSTRACT

Malaria caused by Plasmodium species is an important parasitic infection in Turkey as in the rest of the world. Malaria cases originating in our country are caused by P. vivax; those caused by other Plasmodium spp. are imported cases. In this article, after work-related travel to Cameroon, a patient who acquired specific clinical signs and symptoms of malaria has been evaluated. The major clinical findings of the patient were fever, chills and shaking. After examination of thin and thick blood smears prepared from the peripheral blood of the patient, a 20% rate of Plasmodium parasitemia was obtained and the case was considered to be a mixed P. falciparum and P. ovale infection. In addition, P. falciparum infection was confirmed using the Optimal Malaria Rapid Test and the presence of another Plasmodium species besides P. falciparum was confirmed. Primaquine was added to quinine and doxycycline therapy for P. ovale hypnozoites. No Plasmodium was found in control blood smears after clinical improvement. In this case, it has been emphasized that in differential diagnosis of fever seen after travel to malaria endemic areas, malaria must be considered and prophylaxis must be carried out before travel.

SELECTION OF CITATIONS
SEARCH DETAIL