Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Mol Phylogenet Evol ; 63(2): 244-54, 2012 May.
Article in English | MEDLINE | ID: mdl-22348940

ABSTRACT

The Galápagos archipelago has never been connected to any continental land masses, so it is of interest to know the colonization and diversification history of its endemic species. We analyzed the phylogenetic placement of the endemic Galápagos flycatcher, M. magnirostris, within Myiarchus by using the genes ND2 and cytb (1970 bp) to compare 16 of the 22 species that comprise this genus. We also analyzed variability in cytb sequences from 154 M. magnirostris individuals captured on seven Galápagos islands. Our phylogenetic analyses recovered the two main Myiarchus clades that had been described by previous genetic, morphological, and vocal analyses. M. magnirostris is monophyletic and its closest living relative is M. tyrannulus from Mexico and Central America. The average age for the split node between these two groups was approximately 850,000 years (95% C.I. 630,735-1,087,557). M. tyrannulus, M. nugator, M. nuttingi, M. sagrae, and M. stolidus are not monophyletic species. Within M. magnirostris itself, we found low nucleotide and haplotype diversities (π=0.0009 and h=0.4913, respectively) and a high genetic structure among populations. We also detected a star-shaped haplotype network and significantly negative values for Tajima's D and Fu's Fs for this species. Our results suggest that M. magnirostris originated from a single colonization event and had a recent population expansion in the Galápagos archipelago.


Subject(s)
Cytochromes b/genetics , DNA, Mitochondrial/genetics , NADH Dehydrogenase/genetics , Phylogeny , Songbirds/classification , Songbirds/genetics , Animals , Base Sequence , Ecuador , Evolution, Molecular , Genetic Speciation , Genetic Variation , Genome , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
2.
Mol Phylogenet Evol ; 49(3): 760-73, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18849002

ABSTRACT

We studied the intraspecific evolutionary history of the South American Atlantic forest endemic Xiphorhynchusfuscus (Aves: Dendrocolaptidae) to address questions such as: Was the diversification of this bird's populations associated to areas of avian endemism? Which models of speciation (i.e., refuges, river as barriers or geotectonism) explain the diversification within X. fuscus? Does the genetic data support subspecies as independent evolutionary units (species)? We used mitochondrial (n=34) and nuclear (n=68) DNA sequences of X. fuscus to study temporal and spatial relationships within and between populations. We described four main monophyletic lineages that diverged during the Pleistocene. The subspecies taxonomy did not match all the evolutionary lineages; subspecies atlanticus was the only one that represented a monophyletic and isolated lineage. The distribution of these lineages coincided with some areas of endemism for passerines, suggesting that those areas could be regions of biotic differentiation. The ancestor of X. fuscus diverged approximately 3 million years ago from Amazonian taxa and the phylogeographic pattern suggested that X. fuscus radiated from northeastern Brazil. Neither the riverine nor the geotectonic vicariance models are supported as the primary cause for diversification of geographic lineages, but rainforest contractions and expansions (ecological vicariance) can explain most of the spatial divergence observed in this species. Finally, analyses of gene flow and divergence time estimates suggest that the endangered subspecies atlanticus (from northeastern Brazil) can be considered a full species under the general lineage species concept.


Subject(s)
Evolution, Molecular , Genes, Mitochondrial , Genetic Speciation , Passeriformes/genetics , Phylogeny , Animals , Bayes Theorem , Biodiversity , Brazil , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Gene Flow , Genetics, Population , Geography , Haplotypes , Likelihood Functions , Mitochondria/genetics , Models, Genetic , Passeriformes/classification , Sequence Alignment , Sequence Analysis, DNA
3.
Neotrop. entomol ; 35(2): 201-205, Mar. -Apr. 2006. tab, graf
Article in English | LILACS | ID: lil-431901

ABSTRACT

O gênero Melittobia Westwood compreende várias espécies de microparasitóides, das quais apenas duas foram registradas no Brasil até agora: M. australica Girault e M. hawaiiensis Perkins. Entretanto, essas espécies são de difícil identificação através de métodos taxonômicos tradicionais. No presente trabalho, marcadores moleculares amplificados ao acaso (PCR-RAPD) foram utilizados com o objetivo de se discriminar as duas espécies e, ao mesmo tempo, analisar a variabilidade genética em populações de M. australica. A maioria dos fragmentos gerados foi espécie-específicos estando presente em todos os indivíduos de uma espécie e ausente nos indivíduos da outra espécie, demonstrando a adequação dessa técnica na distinção das espécies de Melittobia estudadas. A técnica de PCR-RAPD também demonstrou que os indivíduos das diferentes populações estudadas são muito semelhantes entre si, o que pode ser atribuído ao efeito fundador e/ou a grande capacidade de dispersão dessas populações. As distâncias genéticas dentro (D = 1,19-3,54%) e entre as populações (D = 1,93-5,28%) de M. australica apresentaram valores muito baixos, refletindo a reduzida variação genética existente nas populações dessa espécie.


Subject(s)
Animals , Hymenoptera/classification , Hymenoptera/genetics , Random Amplified Polymorphic DNA Technique
4.
Neotrop Entomol ; 35(2): 201-5, 2006.
Article in English | MEDLINE | ID: mdl-17348130

ABSTRACT

The genus Melittobia Westwood comprises several species of microparasitoids and only two of them are know to occur in Brazil up to now: M. australica Girault and M. hawaiiensis Perkins. Nevertheless, the differentiation between these two species using traditional taxonomy is very difficult. In the present study, we used random amplified polymorphic DNA chain reaction (RAPD-PCR) to test for its ability to discriminate between these two species and to examine the genetic variation among the studied populations of M. australica. Most of the generated fragments were species-specific, occurring in all individuals of one species and absent in the individuals of the other species demonstrating the appropriateness of such technique to distinguish between both of the Melittobia species occurring in Brazil. RAPD-PCR also demonstrated low variability among different populations of M. australica, which may be due to a founder effect and/or high dispersion capacity of these populations. Genetic distances within (D = 1.19-3.54%) and among populations (D = 1.93-5.28%) presented very low values, reflecting the reduced genetic variation that exists among populations of M. australica.


Subject(s)
Hymenoptera/classification , Hymenoptera/genetics , Random Amplified Polymorphic DNA Technique , Animals
SELECTION OF CITATIONS
SEARCH DETAIL