Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 8(5): e2400018, 2024 05.
Article in English | MEDLINE | ID: mdl-38640945

ABSTRACT

Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Anterior Eye Segment/cytology , Anterior Eye Segment/metabolism , Microfluidics/methods , Microfluidics/instrumentation , Organoids/metabolism , Organoids/cytology , YAP-Signaling Proteins/metabolism , Lab-On-A-Chip Devices , Transcription Factors/metabolism , Transcription Factors/genetics , Ion Channels/genetics , Ion Channels/metabolism
2.
Front Cell Dev Biol ; 10: 1058846, 2022.
Article in English | MEDLINE | ID: mdl-36684423

ABSTRACT

Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the ß-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...