Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Inform ; 170: 104965, 2023 02.
Article in English | MEDLINE | ID: mdl-36580821

ABSTRACT

Multiple Sclerosis (MS) is an autoimmune disease that causes brain and spinal cord lesions, which magnetic resonance imaging (MRI) can detect and characterize. Recently, deep learning methods have achieved remarkable results in the automated segmentation of MS lesions from MRI data. Hence, this study proposes a novel dense residual U-Net model that combines attention gate (AG), efficient channel attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) to enhance the performance of the automatic MS lesion segmentation using 3D MRI sequences. First, convolution layers in each block of the U-Net architecture are replaced by residual blocks and connected densely. Then, AGs are exploited to capture salient features passed through the skip connections. The ECA module is appended at the end of each residual block and each downsampling block of U-Net. Later, the bottleneck of U-Net is replaced with the ASSP module to extract multi-scale contextual information. Furthermore, 3D MR images of Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted (T1-w), and T2-weighted (T2-w) are exploited jointly to perform better MS lesion segmentation. The proposed model is validated on the publicly available ISBI2015 and MSSEG2016 challenge datasets. This model produced an ISBI score of 92.75, a mean Dice score of 66.88%, a mean positive predictive value (PPV) of 86.50%, and a mean lesion-wise true positive rate (LTPR) of 60.64% on the ISBI2015 testing set. Also, it achieved a mean Dice score of 67.27%, a mean PPV of 65.19%, and a mean sensitivity of 74.40% on the MSSEG2016 testing set. The results show that the proposed model performs better than the results of some experts and some of the other state-of-the-art methods realized related to this particular subject. Specifically, the best Dice score and the best LTPR are obtained on the ISBI2015 testing set by using the proposed model to segment MS lesions.


Subject(s)
Multiple Sclerosis , Neural Networks, Computer , Humans , Multiple Sclerosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods
2.
Front Neurosci ; 16: 912000, 2022.
Article in English | MEDLINE | ID: mdl-35968389

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease that causes lesions in the central nervous system of humans due to demyelinating axons. Magnetic resonance imaging (MRI) is widely used for monitoring and measuring MS lesions. Automated methods for MS lesion segmentation have usually been performed on individual MRI scans. Recently, tracking lesion activity for quantifying and monitoring MS disease progression, especially detecting new lesions, has become an important biomarker. In this study, a unique pipeline with a deep neural network that combines U-Net, attention gate, and residual learning is proposed to perform better new MS lesion segmentation using baseline and follow-up 3D FLAIR MR images. The proposed network has a similar architecture to U-Net and is formed from residual units which facilitate the training of deep networks. Networks with fewer parameters are designed with better performance through the skip connections of U-Net and residual units, which facilitate information propagation without degradation. Attention gates also learn to focus on salient features of the target structures of various sizes and shapes. The MSSEG-2 dataset was used for training and testing the proposed pipeline, and the results were compared with those of other proposed pipelines of the challenge and experts who participated in the same challenge. According to the results over the testing set, the lesion-wise F1 and dice scores were obtained as a mean of 48 and 44.30%. For the no-lesion cases, the number of tested and volume of tested lesions were obtained as a mean of 0.148 and 1.488, respectively. The proposed pipeline outperformed 22 proposed pipelines and ranked 8th in the challenge.

SELECTION OF CITATIONS
SEARCH DETAIL
...