Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Funct ; 10(4): 281-8, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1473269

ABSTRACT

In the present study, using immunofluorescence microscopy, we have demonstrated that normal and Ha-ras-1 transformed Buffalo rat liver (BRL) cells which were exposed to cytoskeletal protein inhibitors, showed a differential resistance of their microfilament and microtubule networks. One hour exposure of normal BRL cells to 10(-5) M cytochalasin B provoked a clear and already total breakdown of actin filaments. However, at this concentration of cytochalasin B, the microfilaments of transformed BRLHO6T1-1 cells were not seriously affected; a higher cytochalasin B concentration (> or = 2 x 10(-5) M) was required to induce a significant breakdown of microfilaments in these transformed cells. The two cell lines also demonstrated differential microtubule stability when they were treated with either colchicine or triethyllead. Three hours exposure to 10(-6) M of either antimicrotubule agents was sufficient to disrupt the microtubules of normal BRL cells, without affecting their counterparts in the transformed BRLHO6T1-1 cells. A 10-fold higher drug concentration (10(-5) M) was required to induce microtubular breakdown in the transformed BRL cells. The differential stability of microfilaments and microtubules in normal and transformed BRL cells that was observed could not be attributed to a differential internalization of the agents, as shown by experiments on the uptake of [3H]-cytochalasin B and triethyllead. In addition, the transformed BRLHO6T1-1 cells did not express altered actin and tubulin isoforms, as demonstrated by isoelectric focusing followed by immunoblotting analysis. We conclude that the transformation of BRL cells with the Ha-ras-1 oncogene results in a greater stability of microfilaments and microtubules, leading to a structurally firmer cell shape.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cell Transformation, Neoplastic , Cytoskeletal Proteins/antagonists & inhibitors , Genes, ras , Liver/drug effects , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/ultrastructure , Animals , Cell Line , Cell Line, Transformed , Cytochalasin B/pharmacokinetics , Cytochalasin B/pharmacology , Cytoskeletal Proteins/drug effects , Cytoskeletal Proteins/metabolism , Drug Resistance/genetics , Liver/metabolism , Liver/ultrastructure , Microtubules/drug effects , Microtubules/ultrastructure , Rats
2.
Cell Biochem Funct ; 9(1): 23-8, 1991 Jan.
Article in English | MEDLINE | ID: mdl-2065433

ABSTRACT

Using turbidometry, electron microscopy and immunofluorescent microscopy experiments we studied the effect of captan, a widely used pesticide on mammalian microtubules and microfilaments. Turbidometry at 350 nm showed a dose-dependent inhibition of tubulin assembly incubated with captan. The pesticide, given at equimolar concentration with tubulin (30 microM), caused the total inhibition of microtubule formation, while at lower concentrations (5-20 microM) the inhibition of tubulin polymerization was less extensive. At the same concentration range (5-30 microM), captan also promoted the disassembly of performed microtubules. The results of the in vitro effects of captan with microtubules were confirmed in parallel by electron microscopic studies. In vivo, captan caused also depolymerization of microtubules in cultured mouse fibroblasts as shown by indirect immunofluorescent staining of tubulin. The extent of microtubules disassembly was concentration- and time-dependent. While incubation of the cells with 10 microM captan for 3 h disturbs totally the microtubular structures, incubation with 5 microM captan needs 12 h for the same effect. Recovery of microtubules was observed, when preincubated cells were extensively washed. No interaction of this drug with equimolar concentration of G- or F-actin could be observed in vitro, as shown by polymerization experiments. In line with this, the fluorescent actin pattern in mouse fibroblasts incubated with 10 mM captan for up to 12 h did not seem to be altered. From these results it is concluded that captan interacts in equimolar concentrations with tubulin affecting the assembly and disassembly of microtubules in vitro and in cultures of mammalian cells.


Subject(s)
Captan/pharmacology , Microtubules/drug effects , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cell Line , L Cells , Macromolecular Substances , Mice , Microscopy, Electron , Microscopy, Fluorescence , Microtubules/metabolism , Nephelometry and Turbidimetry , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...