Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(27): 10466-10474, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35763037

ABSTRACT

NaCrO2 particles for high-rate sodium ion batteries were prepared on a multigram scale in segmented flow from chromium nitrate and sodium nitrate using a segregated flow water-in-oil emulsion drying process. Microfluidic processing is an environmentally friendly and rapid synthetic method, which can produce large-scale industrial implementation for the production of materials with superior properties. The reaction time for NaCrO2 particles was reduced by almost one order of magnitude compared to a normal flask synthesis and by several orders of magntitude compared to a conventional solid-state reaction. In addition, it allows for an easy upscaling and was generalized for the synthesis of other layered oxides NaMO2 (M = Cr, Fe, Co, Al). The automated water-in-oil emulsion approach circumvents the diffusion limits of solid-state reactions by allowing a rapid intermixing of the components at a molecular level in submicrometer-sized micelles. A combination of Raman and nuclear magnetic resonance spectroscopy (1H, 23Na), thermal analysis, X-ray diffraction and high resolution transmission electron microscopy provided insight into the formation mechanism of NaCrO2 particles. The new synthesis method allows cathode materials of different types to be produced in a large scale, constant quality and in short reaction times in an automated manner.

2.
Sci Rep ; 12(1): 3935, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273241

ABSTRACT

Preventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature's defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles. Transparent CeO2/polycarbonate surfaces that prevent adhesion, proliferation, and spread of Pseudomonas aeruginosa PA14 were manufactured. Large amounts of monodisperse CeO2 nanoparticles were synthesized in segmented flow using a high-throughput microfluidic benchtop system using water/benzyl alcohol mixtures and oleylamine as capping agent. This reduced the reaction time for nanoceria by more than one order of magnitude compared to conventional batch methods. Ceria nanoparticles prepared by segmented flow showed high catalytic activity in halogenation reactions, which makes them highly efficient functional mimics of haloperoxidase enzymes. Haloperoxidases are used in nature by macroalgae to prevent formation of biofilms via halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). CeO2/polycarbonate nanocomposites were prepared by dip-coating plasma-treated polycarbonate panels in CeO2 dispersions. These showed a reduction in bacterial biofilm formation of up to 85% using P. aeruginosa PA14 as model organism. Besides biofilm formation, also the production of the virulence factor pyocyanin in is under control of the entire quorum sensing systems P. aeruginosa. CeO2/PC showed a decrease of up to 55% in pyocyanin production, whereas no effect on bacterial growth in liquid culture was observed. This indicates that CeO2 nanoparticles affect quorum sensing and inhibit biofilm formation in a non-biocidal manner.


Subject(s)
Nanocomposites , Nanoparticles , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Pseudomonas aeruginosa , Pyocyanine , Quorum Sensing , Virulence Factors
3.
Langmuir ; 36(46): 13804-13816, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33171051

ABSTRACT

Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simulation experiments. The as-synthesized CoO nanooctahedra exhibit superior electrocatalytic activity with long-term stability during oxygen evolution. The morphology of the CoO particles controls the electrocatalytic reaction through the distinct surface sites involved in the oxygen evolution reaction.

4.
Sci Rep ; 10(1): 11728, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678111

ABSTRACT

A facile and chemical specific method to synthesize highly reduced graphene oxide (HRG) and Pd (HRG@Pd) nanocomposite is presented. The HRG surfaces are tailored with amine groups using 1-aminopyrene (1-AP) as functionalizing molecules. The aromatic rings of 1-AP sit on the basal planes of HRG through π-π interactions, leaving amino groups outwards (similar like self-assembled monolayer on 2D substrates). The amino groups provide the chemically specific binding sites to the Pd nucleation which subsequently grow into nanoparticles. HRG@Pd nanocomposite demonstrated both uniform distribution of Pd nanoparticles on HRG surface as well as excellent physical stability and dispersibility. The surface functionalization was confirmed using, ultraviolet-visible (UV-Vis), Fourier transform infra-red and Raman spectroscopy. The size and distribution of Pd nanoparticles on the HRG and crystallinity were confirmed using high-resolution transmission electron microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The catalytic efficiency of highly reduced graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) is tested towards the Suzuki coupling reactions of various aryl halides. The kinetics of the catalytic reaction (Suzuki coupling) using HRG-Py-Pd nanocomposite was monitored using gas chromatography (GC).

5.
J Am Chem Soc ; 140(33): 10536-10545, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30062884

ABSTRACT

Recently, our group successfully developed two new polymerization methodologies for monomers containing two cycloalkene moieties. These polymerization methods yielded well-defined polymers via a combination of ring-opening and ring-closing metathesis (cascade polymerization) or ring-opening, ring-closing, and cross-metathesis (multiple olefin metathesis polymerization (MOMP)) using a second monomer. However, cascade polymerization had some limitations such as low polymerization efficiency (maximum turnover number (TON) of 250) and narrow monomer scope. Furthermore, one-shot MOMP also showed a very narrow monomer scope because of certain undesired side reactions. To overcome these problems, we designed various new monomers containing cyclopentene and even more challenging ring-strain-free cyclohexene moieties, so that polymerization would produce a thermodynamically favored six-membered-ring backbone repeat unit. With this enhanced driving force for polymerization, these new monomers successfully underwent cascade polymerization with a high polymerization efficiency, leading to a maximum TON of 1940 and maximum number-average molecular weight ( Mn) of 343 kDa. Lastly, one-shot MOMP, which uses all three types of metathesis transformations in a single step, was possible with these monomers and gave highly A,B-alternating copolymers with high selectivity as well. This was possible because the newly designed monomers with the appropriate thermodynamic and kinetic preferences suppressed undesired polymerization pathways and reduced defects in the polymer microstructures. In short, we present our strategies for achieving superior cascade polymerization and MOMP using these new monomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...