Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(15): 22462-22477, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752506

ABSTRACT

The next frontier in photonics will rely on the synergistic combination of disparate material systems. One unique organic molecule is azobenzene. This molecule can reversibly change conformations when optically excited in the blue (trans-to-cis) or mid-IR (cis-to-trans). Here, we form an oriented monolayer of azobenzene-containing 4-(4-diethylaminophenylazo)pyridine (Aazo) on SiO2 optical resonators. Due to the uniformity of the Aazo layers, quality factors over 106 are achieved. To control the photo-response, the density of Aazo groups is tuned by integrating methyl spacer molecules. Using a pair of lasers, the molecule is reversibly flipped between molecular conformations, inducing a refractive index change which results in a resonant wavelength shift. The magnitude of the shift scales with the relative surface density of Aazo. To investigate reproducibility and stability of the organic monolayer, three switching cycles are demonstrated, and the performance is consistent even after a device is stored in air for 6 months.

2.
Adv Mater ; 31(32): e1900921, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31197907

ABSTRACT

Orienting light-emitting molecules relative to the substrate is an effective method to enhance the optical outcoupling of organic light-emitting devices. Platinum(II) phosphorescent complexes enable facile control of the molecular alignment due to their planar structures. Here, the orientation of Pt(II) complexes during the growth of emissive layers is controlled by two different methods: modifying the molecular structure and using structural templating. Molecules whose structures are modified by adjusting the diketonate ligand of the Pt complex, dibenzo-(f,h)quinoxaline Pt dipivaloylmethane, (dbx)Pt(dpm), show an ≈20% increased fraction of horizontally aligned transition dipole moments compared to (dbx)Pt(dpm) doped into a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, CBP, host. Alternatively, a template composed of highly ordered 3,4,9,10-perylenetetracarboxylic dianhydride monolayers is predeposited to drive the alignment of a subsequently deposited emissive layer comprising (2,3,7,8,12,13,17,18-octaethyl)-21H,23H-porphyrinplatinum(II) doped into triindolotriazine. This results in a 60% increase in horizontally aligned transition dipole moments compared to the film deposited in the absence of the template. The findings provide a systematic route for controlling molecular alignment during layer growth, and ultimately to increase the optical outcoupling in organic light-emitting diodes.

3.
ACS Appl Mater Interfaces ; 11(5): 5276-5288, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30640428

ABSTRACT

The design of new host materials for phosphorescent organic light emitting diodes (OLEDs) is challenging because several physical property requirements must be met simultaneously. A triplet energy ( ET) higher than that of the chosen emitting dopant, appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels, good charge carrier transport, and high stability are all required. Here, computational methods were used to screen structures to find the most promising candidates for OLED hosts. The screening was carried out in three Tiers. The Tier 1 selection, based on density functional theory calculations, identified a set of eight molecular structures with ET > 2.9 eV, suitable for hosting blue phosphorescent dopants such as iridium(III)bis((4,6-di-fluorophenyl)-pyridinato-N,C2')picolinate. Phenanthro[9,10- d]imidazole was chosen as the starting point for the Tier 2 selection. Thirty-seven unique molecular structures were enumerated by isoelectronic nitrogen transmutation of up to two CH fragments of the phenanthrene. Three molecules, that is, imidazo[4,5- f]-phenanthrolines with nitrogens at the 1,10-, 3,8-, and 4,7-positions, were selected for Tier 3, which involved the use of molecular dynamics simulations and electron coupling calculations to predict differences in charge transport between the three materials. The three were explored experimentally through synthesis and device fabrication. The singlet, triplet, and frontier orbital energies computed using single-molecule density functional theory calculations ( Tiers 1 and 2) were consistent with the experimental values in a fluid solution, and the multiscale modeling scheme ( Tier 3) correctly predicted the poor device performance of one material. We conclude that screening host materials using only single-molecule quantum mechanical data was not sufficient to predict whether a given material would make a good OLED host with certainty; however, they can be used to screen out materials that are destined to fail due to low singlet/triplet energies or a poor match of the frontier orbital energies to the dopant or transport materials.

4.
Chemistry ; 25(6): 1472-1475, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30474286

ABSTRACT

Tetra-aza-pentacenes are attractive n-type small molecules for optoelectronic device applications, yet their syntheses are often laborious. Disclosed here is a one-pot Friedländer synthesis of 1,7,8,14-tetraazapentacece (tAP) derivatives (linear and/or bent), fully aromatized in situ despite the absence of an exogenous oxidant. The photophysics of linear tAPs resembles that of regular pentacene though their crystal structures differ. A LUMO energy of -3.71 eV for di-tert-butylanisole-substituted linear tAP is similar to that of the well-known acceptor, C60 .

5.
Org Lett ; 18(16): 3960-3, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27490703

ABSTRACT

The design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine-free ligand for sky blue phosphorescence is demonstrated in a cyclometalated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 K (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.

SELECTION OF CITATIONS
SEARCH DETAIL
...