Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
Eur J Nutr ; 61(6): 2953-2965, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35307761

ABSTRACT

PURPOSE: High-fat and low-fibre discretionary food intake and FTO genotype are each associated independently with higher risk of obesity. However, few studies have investigated links between obesity and dietary patterns based on discretionary food intake, and the interaction effect of FTO genotype are unknown. Thus, this study aimed to derive dietary patterns based on intake of discretionary foods, saturated fatty acids (SFA) and fibre, and examine cross-sectional associations with BMI and waist circumference (WC), and interaction effects of FTO genotype. METHODS: Baseline data on 1280 adults from seven European countries were included (the Food4Me study). Dietary intake was estimated from a Food Frequency Questionnaire. Reduced rank regression was used to derive three dietary patterns using response variables of discretionary foods, SFA and fibre density. DNA was extracted from buccal swabs. Anthropometrics were self-measured. Linear regression analyses were used to examine associations between dietary patterns and BMI and WC, with an interaction for FTO genotype. RESULTS: Dietary pattern 1 (positively correlated with discretionary foods and SFA, and inversely correlated with fibre) was associated with higher BMI (ß:0.64; 95% CI 0.44, 0.84) and WC (ß:1.58; 95% CI 1.08, 2.07). There was limited evidence dietary pattern 2 (positively correlated with discretionary foods and SFA) and dietary pattern 3 (positively correlated with SFA and fibre) were associated with anthropometrics. FTO risk genotype was associated with higher BMI and WC, with no evidence of a dietary interaction. CONCLUSIONS: Consuming a dietary pattern low in discretionary foods and high-SFA and low-fibre foods is likely to be important for maintaining a healthy weight, regardless of FTO predisposition to obesity. TRIAL REGISTRATION: Clinicaltrials.gov NCT01530139. Registered 9 February 2012 https://clinicaltrials.gov/ct2/show/NCT01530139.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Obesity , Adult , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Body Mass Index , Cross-Sectional Studies , Dietary Fiber , Fatty Acids , Genotype , Humans , Obesity/epidemiology , Obesity/genetics , Waist Circumference
2.
Diabetes ; 71(4): 669-676, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35043141

ABSTRACT

Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with waist circumference (WC) and waist-to-hip ratio (WHR) adjusted for BMI (WCadjBMI and WHRadjBMI), but it remains unclear whether these SNPs relate to change in WCadjBMI or WHRadjBMI with lifestyle intervention for weight loss. We hypothesized that polygenic scores (PS) comprised of 59 SNPs previously associated with central adiposity would predict less of a reduction in WCadjBMI or WHRadjBMI at 8-10 weeks in two lifestyle intervention trials, NUGENOB and DiOGenes, and at 1 year in five lifestyle intervention trials, Look AHEAD, Diabetes Prevention Program, Diabetes Prevention Study, DIETFITS, and PREDIMED-Plus. One-SD higher PS related to a smaller 1-year change in WCadjBMI in the lifestyle intervention arms at year 1 and thus predicted poorer response (ß = 0.007; SE = 0.003; P = 0.03) among White participants overall and in White men (ß = 0.01; SE = 0.004; P = 0.01). At average weight loss, this amounted to 0.20-0.28 cm per SD. No significant findings emerged in White women or African American men for the 8-10-week outcomes or for WHRadjBMI. Findings were heterogeneous in African American women. These results indicate that polygenic risk estimated from these 59 SNPs relates to change in WCadjBMI with lifestyle intervention, but the effects are small and not of sufficient magnitude to be clinically significant.


Subject(s)
Genome-Wide Association Study , Weight Loss , Adiposity/genetics , Body Mass Index , Female , Humans , Life Style , Male , Waist Circumference/genetics , Waist-Hip Ratio , Weight Loss/genetics
3.
J Clin Endocrinol Metab ; 107(1): e130-e142, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34415992

ABSTRACT

CONTEXT: Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE: To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS: AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS: During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION: Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.


Subject(s)
Adipose Tissue/pathology , Diet, Reducing , Gene Regulatory Networks , Growth Differentiation Factor 15/metabolism , Obesity/pathology , Transcriptome , Weight Loss , Adipose Tissue/metabolism , Adult , Biomarkers/metabolism , Body Mass Index , Female , Follow-Up Studies , Growth Differentiation Factor 15/genetics , Humans , Male , Obesity/metabolism , Prognosis
4.
Front Nutr ; 8: 683369, 2021.
Article in English | MEDLINE | ID: mdl-34277683

ABSTRACT

In this secondary analysis of the DiOGenes study, we investigated whether physical activity (PA) contributes to diet-induced weight loss and helps to reduce subsequent regain. We also studied the associations of PA with changes in cardiometabolic variables. Adults with overweight were included and followed an 8-week low-calorie diet (LCD). When successful (>8% weight loss), participants were randomized to different ad libitum diet groups and were advised to maintain their weight loss over the 6-month intervention period. Body weight (BW), body composition, cardiometabolic variables and subjectively-assessed PA were measured at baseline, at the end of weight loss and at the end of the intervention. BW was reduced by the LCD (from 99.8 ± 16.7 to 88.4 ± 14.9 kg; P < 0.001). This reduction was maintained during the weight maintenance period (89.2 ± 16.0 kg). Total PA (sum score of the three subscales of the Baecke questionnaire) increased during the weight loss period (from 8.16 ± 0.83 to 8.39 ± 0.78; P < 0.001) and this increase was subsequently maintained (8.42 ± 0.90). We found no evidence that baseline PA predicted weight loss. However, a higher level of baseline PA predicted a larger weight-loss-induced improvement in total cholesterol, triglycerides, glucose and CRP, and in post-prandial insulin sensitivity (Matsuda index). Subsequent weight and fat mass maintenance were predicted by the post-weight loss level of PA and associated with changes in PA during the weight maintenance phase. In conclusion, despite the fact that higher baseline levels of PA did not predict more weight loss during the LCD, nor that an increase in PA during the LCD was associated with more weight loss, higher PA levels were associated with more improvements in several cardiometabolic variables. The positive effect of higher PA on weight loss maintenance seems in contrast to randomized controlled trials that have not been able to confirm a positive effect of exercise training programmes on weight loss maintenance. This analysis supports the notion that higher self-imposed levels of PA may improve the cardiometabolic risk profile during weight loss and help to maintain weight loss afterwards.

5.
Int J Behav Nutr Phys Act ; 18(1): 70, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34092234

ABSTRACT

BACKGROUND: The effect of personalised nutrition advice on discretionary foods intake is unknown. To date, two national classifications for discretionary foods have been derived. This study examined changes in intake of discretionary foods and beverages following a personalised nutrition intervention using these two classifications. METHODS: Participants were recruited into a 6-month RCT across seven European countries (Food4Me) and were randomised to receive generalised dietary advice (control) or one of three levels of personalised nutrition advice (based on diet [L1], phenotype [L2] and genotype [L3]). Dietary intake was derived from an FFQ. An analysis of covariance was used to determine intervention effects at month 6 between personalised nutrition (overall and by levels) and control on i) percentage energy from discretionary items and ii) percentage contribution of total fat, SFA, total sugars and salt to discretionary intake, defined by Food Standards Scotland (FSS) and Australian Dietary Guidelines (ADG) classifications. RESULTS: Of the 1607 adults at baseline, n = 1270 (57% female) completed the intervention. Percentage sugars from FSS discretionary items was lower in personalised nutrition vs control (19.0 ± 0.37 vs 21.1 ± 0.65; P = 0.005). Percentage energy (31.2 ± 0.59 vs 32.7 ± 0.59; P = 0.031), percentage total fat (31.5 ± 0.37 vs 33.3 ± 0.65; P = 0.021), SFA (36.0 ± 0.43 vs 37.8 ± 0.75; P = 0.034) and sugars (31.7 ± 0.44 vs 34.7 ± 0.78; P < 0.001) from ADG discretionary items were lower in personalised nutrition vs control. There were greater reductions in ADG percentage energy and percentage total fat, SFA and salt for those randomised to L3 vs L2. CONCLUSIONS: Compared with generalised dietary advice, personalised nutrition advice achieved greater reductions in discretionary foods intake when the classification included all foods high in fat, added sugars and salt. Future personalised nutrition approaches may be used to target intake of discretionary foods. TRIAL REGISTRATION: Clinicaltrials.gov NCT01530139 . Registered 9 February 2012.


Subject(s)
Diet, Healthy/methods , Health Promotion/methods , Nutrition Policy , Australia , Beverages , Diet/statistics & numerical data , Female , Food , Humans , Male
6.
Lifestyle Genom ; 14(3): 63-72, 2021.
Article in English | MEDLINE | ID: mdl-34186541

ABSTRACT

INTRODUCTION: Carbohydrate intake and physical activity are related to glucose homeostasis, both being influenced by individual genetic makeup. However, the interactions between these 2 factors, as affected by genetics, on glycaemia have been scarcely reported. OBJECTIVE: We focused on analysing the interplay between carbohydrate intake and physical activity levels on blood glucose, taking into account a genetic risk score (GRS), based on SNPs related to glucose/energy metabolism. METHODS: A total of 1,271 individuals from the Food4Me cohort, who completed the nutritional intervention, were evaluated at baseline. We collected dietary information by using an online-validated food frequency questionnaire, a questionnaire on physical activity, blood biochemistry by analysis of dried blood spots, and by analysis of selected SNPs. Fifteen out of 31 SNPs, with recognized participation in carbohydrate/energy metabolism, were included in the component analyses. The GRS included risk alleles involved in the control of glycaemia or energy-yielding processes. RESULTS: Data concerning anthropometric, clinical, metabolic, dietary intake, physical activity, and genetics related to blood glucose levels showed expected trends in European individuals of comparable sex and age, being categorized by lifestyle, BMI, and energy/carbohydrate intakes, in this Food4Me population. Blood glucose was inversely associated with physical activity level (ß = -0.041, p = 0.013) and positively correlated with the GRS values (ß = 0.015, p = 0.047). Interestingly, an interaction affecting glycaemia, concerning physical activity level with carbohydrate intake, was found (ß = -0.060, p = 0.033), which also significantly depended on the genetic background (GRS). CONCLUSIONS: The relationships of carbohydrate intake and physical activity are important in understanding glucose homeostasis, where a role for the genetic background should be ascribed.


Subject(s)
Blood Glucose , Energy Intake , Diet , Exercise , Genes, Regulator , Humans
7.
Nutrients ; 13(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068687

ABSTRACT

A low-calorie diet (LCD) is an effective strategy to lose weight and improve cardiometabolic risk factors, however, sexual dimorphism may be present. This study aims to investigate sexual dimorphism in cardiometabolic risk factors following weight loss and after weight maintenance. 782 overweight/obese participants (65% women) of the DiOGenes trial followed an 8-week LCD (~800 kcal/day), with a 6-months follow-up weight maintenance period on ad libitum diets varying in protein content and glycemic index. Men lost more body weight during the LCD period (-12.8 ± 3.9 vs. -10.1 ± 2.8 kg, respectively, p < 0.001), but regained more weight during the follow-up period than women (1.5 ± 5.4 vs. -0.5 ± 5.5 kg, respectively, p < 0.001). Even though beneficial LCD-induced changes in cardiometabolic risk factors were found for both sexes, improvements in HOMA-IR, muscle and hepatic insulin sensitivity, triacylglycerol, HDL-, LDL- and total cholesterol, diastolic blood pressure, cholesterol esters, sphingomyelins and adiponectin were more pronounced in men than women (std. ß range: 0.073-0.144, all q < 0.05), after adjustment for weight change. During follow-up, women demonstrated a lower rebound in HDL-cholesterol, triacylglycerol and diacylglycerol (std. ß range: 0.114-0.164, all q < 0.05), independent of changes in body weight. Overall, we demonstrated sexual dimorphism in LCD-induced changes in body weight and cardiometabolic risk profile, which may be attributed to differences in body fat distribution and metabolic status.


Subject(s)
Caloric Restriction , Cardiometabolic Risk Factors , Cardiovascular Diseases/prevention & control , Sex Characteristics , Weight Loss , Adult , Body Mass Index , Body Weight , Cholesterol, HDL , Female , Glucose , Glycemic Index , Homeostasis , Humans , Insulin Resistance , Lipidomics , Male , Middle Aged , Obesity/diet therapy , Overweight/diet therapy , Triglycerides
8.
J Clin Endocrinol Metab ; 106(5): 1312-1324, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33560372

ABSTRACT

CONTEXT: Mitochondria are essential for cellular energy homeostasis, yet their role in subcutaneous adipose tissue (SAT) during different types of weight-loss interventions remains unknown. OBJECTIVE: To investigate how SAT mitochondria change following diet-induced and bariatric surgery-induced weight-loss interventions in 4 independent weight-loss studies. METHODS: The DiOGenes study is a European multicenter dietary intervention with an 8-week low caloric diet (LCD; 800 kcal/d; n = 261) and 6-month weight-maintenance (n = 121) period. The Kuopio Obesity Surgery study (KOBS) is a Roux-en-Y gastric bypass (RYGB) surgery study (n = 172) with a 1-year follow-up. We associated weight-loss percentage with global and 2210 mitochondria-related RNA transcripts in linear regression analysis adjusted for age and sex. We repeated these analyses in 2 studies. The Finnish CRYO study has a 6-week LCD (800-1000 kcal/d; n = 19) and a 10.5-month follow-up. The Swedish DEOSH study is a RYGB surgery study with a 2-year (n = 49) and 5-year (n = 37) follow-up. RESULTS: Diet-induced weight loss led to a significant transcriptional downregulation of oxidative phosphorylation (DiOGenes; ingenuity pathway analysis [IPA] z-scores: -8.7 following LCD, -4.4 following weight maintenance; CRYO: IPA z-score: -5.6, all P < 0.001), while upregulation followed surgery-induced weight loss (KOBS: IPA z-score: 1.8, P < 0.001; in DEOSH: IPA z-scores: 4.0 following 2 years, 0.0 following 5 years). We confirmed an upregulated oxidative phosphorylation at the proteomics level following surgery (IPA z-score: 3.2, P < 0.001). CONCLUSIONS: Differentially regulated SAT mitochondria-related gene expressions suggest qualitative alterations between weight-loss interventions, providing insights into the potential molecular mechanistic targets for weight-loss success.


Subject(s)
Adipose Tissue/metabolism , Genes, Mitochondrial/genetics , Weight Loss/physiology , Adult , Bariatric Surgery , Diet, Reducing , Female , Gene Expression , Gene Expression Profiling , Humans , Male , Metabolic Networks and Pathways/genetics , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Obesity, Morbid/diet therapy , Obesity, Morbid/genetics , Obesity, Morbid/surgery , Retrospective Studies , Weight Loss/genetics , Weight Reduction Programs
9.
Health Data Sci ; 2021: 9897048, 2021.
Article in English | MEDLINE | ID: mdl-38487510

ABSTRACT

Objective. The strongest locus which associated with type 2 diabetes (T2D) by the common variant rs7903146 is the transcription factor 7-like 2 gene (TCF7L2). We aimed to quantify the interaction of diet/lifestyle interventions and the genetic effect of TCF7L2 rs7903146 on glycemic traits, body weight, or waist circumference in overweight or obese adults in several randomized controlled trials (RCTs).Methods. From October 2016 to May 2018, a large collaborative analysis was performed by pooling individual-participant data from 7 RCTs. These RCTs reported changes in glycemic control and adiposity of the variant rs7903146 after dietary/lifestyle-related interventions in overweight or obese adults. Gene treatment interaction models which used the genetic effect encoded by the allele dose and common covariates were applicable to individual participant data in all studies.Results. In the joint analysis, a total of 7 eligible RCTs were included (n=4,114). Importantly, we observed a significant effect modification of diet/lifestyle-related interventions on the TCF7L2 variant rs7903146 and changes in fasting glucose. Compared with the control group, diet/lifestyle interventions were related to lower fasting glucose by -3.06 (95% CI, -5.77 to -0.36) mg/dL (test for heterogeneity and overall effect: I2=45.1%, p<0.05; z=2.20, p=0.028) per one copy of the TCF7L2 T risk allele. Furthermore, regardless of genetic risk, diet/lifestyle interventions were associated with lower waist circumference. However, there was no significant change for diet/lifestyle interventions in other glycemic control and adiposity traits per one copy of TCF7L2 risk allele.Conclusions. Our findings suggest that carrying the TCF7L2 T risk allele may have a modestly greater benefit for specific diet/lifestyle interventions to improve the control of fasting glucose in overweight or obese adults.

10.
Cell Rep ; 32(8): 108075, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32846132

ABSTRACT

Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.


Subject(s)
Atrial Natriuretic Factor/metabolism , Thermogenesis/physiology , Animals , Humans , Male , Mice , Mice, Knockout
11.
PLoS Comput Biol ; 16(6): e1007882, 2020 06.
Article in English | MEDLINE | ID: mdl-32492067

ABSTRACT

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic architecture of complex traits, but existing studies do not leverage shared regulatory patterns and suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136 pQTL associations in the first cohort, of which >80% replicate in the second independent cohort and have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78% of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably, 15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including several trans and pleiotropic hits with successful independent validation. Finally, the analysis of extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be explored in future research; all results are accessible online from our searchable database. Thanks to its efficient variational Bayes implementation, LOCUS can analyze jointly thousands of traits and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for large-scale genome-wide association and QTL analyses. Diet, Obesity and Genes (DiOGenes) trial registration number: NCT00390637.


Subject(s)
Bayes Theorem , Blood Proteins/genetics , Quantitative Trait Loci , Biomarkers/blood , Genome-Wide Association Study , Humans
12.
Sci Rep ; 10(1): 9236, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514005

ABSTRACT

Weight loss aims to improve glycemic control in obese but strong variability is observed. Using a multi-omics approach, we investigated differences between 174 responders and 201 non-responders, that had lost >8% body weight following a low-caloric diet (LCD, 800 kcal/d for 8 weeks). The two groups were comparable at baseline for body composition, glycemic control, adipose tissue transcriptomics and plasma ketone bodies. But they differed significantly in their response to LCD, including improvements in visceral fat, overall insulin resistance (IR) and tissue-specific IR. Transcriptomics analyses found down-regulation in key lipogenic genes (e.g. SCD, ELOVL5) in responders relative to non-responders; metabolomics showed increase in ketone bodies; while proteomics revealed differences in lipoproteins. Findings were consistent between genders; with women displaying smaller improvements owing to a better baseline metabolic condition. Integrative analyses identified a plasma omics model that was able to predict non-responders with strong performance (on a testing dataset, the Receiving Operating Curve Area Under the Curve (ROC AUC) was 75% with 95% Confidence Intervals (CI) [67%, 83%]). This model was based on baseline parameters without the need for intrusive measurements and outperformed clinical models (p = 0.00075, with a +14% difference on the ROC AUCs). Our approach document differences between responders and non-responders, with strong contributions from liver and adipose tissues. Differences may be due to de novo lipogenesis, keto-metabolism and lipoprotein metabolism. These findings are useful for clinical practice to better characterize non-responders both prior and during weight loss.


Subject(s)
Adipose Tissue/metabolism , Genomics , Ketone Bodies/blood , Proteomics , Weight Loss/physiology , Area Under Curve , Body Composition , Diet, Reducing , Down-Regulation , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Humans , Intra-Abdominal Fat/physiology , Lipids/analysis , Phenotype , ROC Curve
13.
Br J Nutr ; 123(12): 1396-1405, 2020 06 28.
Article in English | MEDLINE | ID: mdl-32234083

ABSTRACT

Little is known about who would benefit from Internet-based personalised nutrition (PN) interventions. This study aimed to evaluate the characteristics of participants who achieved greatest improvements (i.e. benefit) in diet, adiposity and biomarkers following an Internet-based PN intervention. Adults (n 1607) from seven European countries were recruited into a 6-month, randomised controlled trial (Food4Me) and randomised to receive conventional dietary advice (control) or PN advice. Information on dietary intake, adiposity, physical activity (PA), blood biomarkers and participant characteristics was collected at baseline and month 6. Benefit from the intervention was defined as ≥5 % change in the primary outcome (Healthy Eating Index) and secondary outcomes (waist circumference and BMI, PA, sedentary time and plasma concentrations of cholesterol, carotenoids and omega-3 index) at month 6. For our primary outcome, benefit from the intervention was greater in older participants, women and participants with lower HEI scores at baseline. Benefit was greater for individuals reporting greater self-efficacy for 'sticking to healthful foods' and who 'felt weird if [they] didn't eat healthily'. Participants benefited more if they reported wanting to improve their health and well-being. The characteristics of individuals benefiting did not differ by other demographic, health-related, anthropometric or genotypic characteristics. Findings were similar for secondary outcomes. These findings have implications for the design of more effective future PN intervention studies and for tailored nutritional advice in public health and clinical settings.


Subject(s)
Nutrition Therapy/methods , Precision Medicine/statistics & numerical data , Adiposity , Adult , Age Factors , Behavior Therapy , Body Mass Index , Counseling , Diet , Diet, Healthy , Europe , Exercise , Female , Health Behavior , Humans , Internet , Life Style , Male , Middle Aged , Nutrition Therapy/statistics & numerical data , Odds Ratio , Socioeconomic Factors
14.
Int J Obes (Lond) ; 44(6): 1376-1386, 2020 06.
Article in English | MEDLINE | ID: mdl-32203114

ABSTRACT

BACKGROUND: Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles. METHODS: This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m2) (≤65 years; 63% women) without diabetes of the European Diogenes Study. Hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), were derived from a five-point OGTT. At baseline 17 serum metabolites were identified and quantified by nuclear-magnetic-resonance spectroscopy. Linear mixed model analyses (adjusting for center, sex, body mass index (BMI), waist-to-hip ratio) were used to associate HIRI and MISI with these metabolites. In an independent sample of 540 participants without diabetes (BMI ≥ 27 kg/m2; 40-65 years; 46% women) of the Maastricht Study, an observational prospective population-based cohort study, 11 plasma metabolites and a seven-point OGTT were available for validation. RESULTS: Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study. CONCLUSIONS: In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.


Subject(s)
Insulin Resistance , Obesity/metabolism , Overweight/metabolism , Adult , Female , Humans , Ketone Bodies/blood , Liver/metabolism , Male , Metabolomics , Middle Aged , Multicenter Studies as Topic , Muscle, Skeletal/metabolism , Observational Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic
15.
Diabetes ; 68(12): 2247-2258, 2019 12.
Article in English | MEDLINE | ID: mdl-31492661

ABSTRACT

Obesity-related insulin resistance (IR) may develop in multiple organs, representing various etiologies for cardiometabolic diseases. We identified abdominal subcutaneous adipose tissue (ScAT) transcriptome profiles in liver or muscle IR by means of RNA sequencing in overweight or obese participants of the Diet, Obesity, and Genes (DiOGenes) (NCT00390637, ClinicalTrials.gov) cohort (n = 368). Tissue-specific IR phenotypes were derived from a 5-point oral glucose tolerance test. Hepatic and muscle IR were characterized by distinct abdominal ScAT transcriptome profiles. Genes related to extracellular remodeling were upregulated in individuals with primarily hepatic IR, while genes related to inflammation were upregulated in individuals with primarily muscle IR. In line with this, in two independent cohorts, the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) (n = 325) and the Maastricht Study (n = 685), an increased systemic low-grade inflammation profile was specifically related to muscle IR but not to liver IR. We propose that increased ScAT inflammatory gene expression may translate into an increased systemic inflammatory profile, linking ScAT inflammation to the muscle IR phenotype. These distinct IR phenotypes may provide leads for more personalized prevention of cardiometabolic diseases.


Subject(s)
Inflammation/metabolism , Insulin Resistance/physiology , Liver/metabolism , Obesity/metabolism , Overweight/metabolism , Subcutaneous Fat/metabolism , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
16.
Am J Prev Med ; 57(2): 209-219, 2019 08.
Article in English | MEDLINE | ID: mdl-31248745

ABSTRACT

INTRODUCTION: This study tested the hypothesis that providing personalized nutritional advice and feedback more frequently would promote larger, more appropriate, and sustained changes in dietary behavior as well as greater reduction in adiposity. STUDY DESIGN: A 6-month RCT (Food4Me) was conducted in seven European countries between 2012 and 2013. SETTING/PARTICIPANTS: A total of 1,125 participants were randomized to Lower- (n=562) or Higher- (n=563) Frequency Feedback groups. INTERVENTION: Participants in the Lower-Frequency group received personalized nutritional advice at baseline and at Months 3 and 6 of the intervention, whereas the Higher-Frequency group received personalized nutritional advice at baseline and at Months 1, 2, 3 and 6. MAIN OUTCOME MEASURES: The primary outcomes were change in dietary intake (at food and nutrient levels) and obesity-related traits (body weight, BMI, and waist circumference). Participants completed an online Food Frequency Questionnaire to estimate usual dietary intake at baseline and at Months 3 and 6 of the intervention. Overall diet quality was evaluated using the 2010 Healthy Eating Index. Obesity-related traits were self-measured and reported by participants via the Internet. Statistical analyses were performed during the first quarter of 2018. RESULTS: At 3 months, participants in the Lower- and Higher-Frequency Feedback groups showed improvements in Healthy Eating Index score; this improvement was larger in the Higher-Frequency group than the Lower-Frequency group (Δ=1.84 points, 95% CI=0.79, 2.89, p=0.0001). Similarly, there were greater improvements for the Higher- versus Lower-Frequency group for body weight (Δ= -0.73 kg, 95% CI= -1.07, -0.38, p<0.0001), BMI (Δ= -0.24 kg/m2, 95% CI= -0.36, -0.13, p<0.0001), and waist circumference (Δ= -1.20 cm, 95% CI= -2.36, -0.04, p=0.039). However, only body weight and BMI remained significant at 6 months. CONCLUSIONS: At 3 months, higher-frequency feedback produced larger improvements in overall diet quality as well as in body weight and waist circumference than lower-frequency feedback. However, only body weight and BMI remained significant at 6 months. TRIAL REGISTRATION: This study is registered at www.clinicaltrials.gov NCT01530139.


Subject(s)
Diet, Healthy/statistics & numerical data , Feedback , Health Behavior , Nutritional Requirements , Referral and Consultation , Adult , Body Weight/physiology , Energy Intake/physiology , Europe , Female , Humans , Internet , Male , Middle Aged , Obesity , Waist Circumference
17.
Mol Cell Proteomics ; 18(6): 1242-1254, 2019 06.
Article in English | MEDLINE | ID: mdl-30948622

ABSTRACT

Comprehensive, high throughput analysis of the plasma proteome has the potential to enable holistic analysis of the health state of an individual. Based on our own experience and the evaluation of recent large-scale plasma mass spectrometry (MS) based proteomic studies, we identified two outstanding challenges: slow and delicate nano-flow liquid chromatography (LC) and irreproducibility of identification of data-dependent acquisition (DDA). We determined an optimal solution reducing these limitations with robust capillary-flow data-independent acquisition (DIA) MS. This platform can measure 31 plasma proteomes per day. Using this setup, we acquired a large-scale plasma study of the diet, obesity and genes dietary (DiOGenes) comprising 1508 samples. Proving the robustness, the complete acquisition was achieved on a single analytical column. Totally, 565 proteins (459 identified with two or more peptide sequences) were profiled with 74% data set completeness. On average 408 proteins (5246 peptides) were identified per acquisition (319 proteins in 90% of all acquisitions). The workflow reproducibility was assessed using 34 quality control pools acquired at regular intervals, resulting in 92% data set completeness with CVs for protein measurements of 10.9%.The profiles of 20 apolipoproteins could be profiled revealing distinct changes. The weight loss and weight maintenance resulted in sustained effects on low-grade inflammation, as well as steroid hormone and lipid metabolism, indicating beneficial effects. Comparison to other large-scale plasma weight loss studies demonstrated high robustness and quality of biomarker candidates identified. Tracking of nonenzymatic glycation indicated a delayed, slight reduction of glycation in the weight maintenance phase. Using stable-isotope-references, we could directly and absolutely quantify 60 proteins in the DIA.In conclusion, we present herein the first large-scale plasma DIA study and one of the largest clinical research proteomic studies to date. Application of this fast and robust workflow has great potential to advance biomarker discovery in plasma.


Subject(s)
Blood Proteins/metabolism , Proteomics , Rheology , Weight Loss , Adult , Databases, Protein , Glycosylation , Humans , Isotope Labeling , Proteome/metabolism , Reference Standards
18.
Am J Clin Nutr ; 109(4): 1029-1037, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30982860

ABSTRACT

BACKGROUND: Several studies recently reported contradicting results regarding the link between amylase 1 (AMY1) copy numbers (CNs), obesity, and type 2 diabetes. OBJECTIVE: The aim of this study was to assess the impact of AMY1 CN on anthropometrics and glycemic outcomes in obese individuals following a 2-phase dietary weight loss intervention. METHODS: Using the paralog ratio test, AMY1 CNs were accurately measured in 761 obese individuals from the DiOGenes study. Subjects first underwent an 8-wk low-calorie diet (LCD, at 800 kcal/d) and then were randomly assigned to a 6-mo weight maintenance dietary (WMD) intervention with arms having different glycemic loads. RESULTS: At baseline, a modest association between AMY1 CN and BMI (P = 0.04) was observed. AMY1 CN was not associated with baseline glycemic variables. In addition, AMY1 CN was not associated with anthropometric or glycemic outcomes following either LCD or WMD. Interaction analyses between AMY1 CN and nutrient intake did not reveal any significant association with clinical parameters (at baseline and following LCD or WMD) or when testing gene × WMD interactions during the WMD phase. CONCLUSION: In the absence of association with weight trajectories or glycemic improvements, the AMY1 CN cannot be considered as an important biomarker for response to a clinical weight loss and weight maintenance programs in overweight/obese subjects. This trial was registered at www.clinicaltrials.gov as NCT00390637.


Subject(s)
Obesity/diet therapy , Obesity/genetics , Salivary alpha-Amylases/genetics , Adult , Body Weight , Body-Weight Trajectory , Caloric Restriction , Female , Gene Dosage , Glycemic Load , Humans , Male , Middle Aged , Obesity/enzymology , Obesity/physiopathology , Salivary alpha-Amylases/metabolism , Weight Loss
19.
Am J Clin Nutr ; 109(6): 1499-1510, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30869115

ABSTRACT

BACKGROUND: The adipose tissue (AT) is a secretory organ producing a wide variety of factors that participate in the genesis of metabolic disorders linked to excess fat mass. Weight loss improves obesity-related disorders. OBJECTIVES: Transcriptomic studies on human AT, and a combination of analyses of transcriptome and proteome profiling of conditioned media from adipocytes and stromal cells isolated from human AT, have led to the identification of apolipoprotein M (apoM) as a putative adipokine. We aimed to validate apoM as novel adipokine, investigate the relation of AT APOM expression with metabolic syndrome and insulin sensitivity, and study the regulation of its expression in AT and secretion during calorie restriction-induced weight loss. METHODS: We examined APOM mRNA level and secretion in AT from 485 individuals enrolled in 5 independent clinical trials, and in vitro in human multipotent adipose-derived stem cell adipocytes. APOM expression and secretion were measured during dieting. RESULTS: APOM was expressed in human subcutaneous and visceral AT, mainly by adipocytes. ApoM was released into circulation from AT, and plasma apoM concentrations correlate with AT APOM mRNA levels. In AT, APOM expression inversely correlated with adipocyte size, was lower in obese compared to lean individuals, and reduced in subjects with metabolic syndrome and type 2 diabetes. Regardless of fat depot, there was a positive relation between AT APOM expression and systemic insulin sensitivity, independently of fat mass and plasma HDL cholesterol. In human multipotent adipose-derived stem cell adipocytes, APOM expression was enhanced by insulin-sensitizing peroxisome proliferator-activated receptor agonists and inhibited by tumor necrosis factor α, a cytokine that causes insulin resistance. In obese individuals, calorie restriction increased AT APOM expression and secretion. CONCLUSIONS: ApoM is a novel adipokine, the expression of which is a hallmark of healthy AT and is upregulated by calorie restriction. AT apoM deserves further investigation as a potential biomarker of risk for diabetes and cardiovascular diseases.


Subject(s)
Adipokines/genetics , Apolipoproteins M/genetics , Obesity/diet therapy , Obesity/genetics , Adipocytes/metabolism , Adipokines/metabolism , Apolipoproteins M/metabolism , Caloric Restriction , Clinical Trials as Topic , Cohort Studies , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Obesity/metabolism
20.
J Sports Sci ; 37(24): 2759-2767, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30773995

ABSTRACT

Selecting effective dietary strategies for professional football players requires comprehensive information on their energy expenditure (EE) and dietary intake. This observational study aimed to assess EE and dietary intake over a 14-day period in a representative group (n = 41) of professional football players playing in the Dutch Premier League (Eredivisie). Daily EE, as assessed by doubly labelled water, was 13.8 ± 1.5 MJ/day, representing a physical activity level (PAL) of 1.75 ± 0.13. Weighted mean energy intake (EI), as assessed by three face-to-face 24-h recalls, was 11.1 ± 2.9 MJ/day, indicating 18 ± 15% underreporting of EI. Daily EI was higher on match days (13.1 ± 4.1 MJ) compared with training (11.1 ± 3.4 MJ; P < 0.01) and rest days (10.5 ± 3.1 MJ; P < 0.001). Daily carbohydrate intake was significantly higher during match days (5.1 ± 1.7 g/kg body mass (BM)) compared with training (3.9 ± 1.5 g/kg BM; P < 0.001) and rest days (3.7 ± 1.4 g/kg BM; P < 0.001). Weighted mean protein intake was 1.7 ± 0.5 g/kg BM. Daytime distribution of protein intake was skewed, with lowest intakes at breakfast and highest at dinner. In conclusion, daily EE and PAL of professional football players are modest. Daily carbohydrate intake should be increased to maximize performance and recovery. Daily protein intake seems more than adequate, but could be distributed more evenly throughout the day.


Subject(s)
Diet , Energy Metabolism , Soccer , Sports Nutritional Physiological Phenomena , Adolescent , Adult , Athletes , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Energy Intake , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...