Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(44)2020 10.
Article in English | MEDLINE | ID: mdl-33115736

ABSTRACT

Extended-release gastrointestinal (GI) luminal delivery substantially increases the ease of administration of drugs and consequently the adherence to therapeutic regimens. However, because of clearance by intrinsic GI motility, device gastroretention and extended drug release over a prolonged duration are very challenging. Here, we report that GI parasite-inspired active mechanochemical therapeutic grippers, or theragrippers, can reside within the GI tract of live animals for 24 hours by autonomously latching onto the mucosal tissue. We also observe a notable sixfold increase in the elimination half-life using theragripper-mediated delivery of a model analgesic ketorolac tromethamine. These results provide first-in-class evidence that shape-changing and self-latching microdevices enhance the efficacy of extended drug delivery.


Subject(s)
Drug Delivery Systems , Ketorolac Tromethamine , Animals , Drug Liberation , Gastrointestinal Tract , Pharmaceutical Preparations
2.
Sci Adv ; 3(10): e1701084, 2017 10.
Article in English | MEDLINE | ID: mdl-28989963

ABSTRACT

Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold monolayer graphene into predesigned, ordered 3D structures. The methodology involves the surface functionalization of monolayer graphene using ultrathin noncovalently bonded mussel-inspired polydopamine and thermoresponsive poly(N-isopropylacrylamide) brushes. The functionalized graphene is micropatterned and self-folds into ordered 3D structures with reversible deformation under a full control by temperature. The structures are characterized using spectroscopy and microscopy, and self-folding is rationalized using a multiscale molecular dynamics model. Our work demonstrates the potential to design and fabricate ordered 3D graphene structures with predictable shape and dynamics. We highlight applicability by encapsulating live cells and creating nonlinear resistor and creased transistor devices.

4.
Soft Matter ; 11(10): 1998-2007, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25627327

ABSTRACT

The design of a robust superhydrophobic surface is a widely pursued topic. While many investigations are limited to applications with high impact velocities (for raindrops of the order of a few meters per second), the essence of robustness is yet to be analyzed for applications involving quasi-static liquid transfer. To achieve robustness with high impact velocities, the surface parameters (geometrical details, chemistry) have to be selected from a narrow range of permissible values, which often entail additional manufacturing costs. From the dual perspectives of thermodynamics and mechanics, we analyze the significance of robustness for quasi-static drop impact, and present the range of permissible surface characteristics. For surfaces with a Young's contact angle greater than 90° and square micropillar geometry, we show that robustness can be enforced when an intermediate wetting state (sagged state) impedes transition to a wetted state (Wenzel state). From the standpoint of mechanics, we use available scientific data to prove that a surface with any topology must withstand a pressure of 117 Pa to be robust. Finally, permissible values of surface characteristics are determined, which ensure robustness with thermodynamics (formation of a sagged state) and mechanics (withstanding 117 Pa).

SELECTION OF CITATIONS
SEARCH DETAIL
...