Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomater Biosyst ; 3: 100022, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36824308

ABSTRACT

The proposed study involves delivering drug/bioactive using a single nanoplatform based on poly lactic-co-glycolic acid (PLGA) for better efficacy, synergistic effect, and reduced toxicity. PLGA was conjugated to doxorubicin (D1), and this conjugate was used for encapsulation of naringenin (D2) to develop naringenin loaded PLGA-doxorubicin nanoparticles (PDNG). The PDNG NPs were 165.4 ± 4.27 nm in size, having 0.112 ± 0.035 PDI, with -10.1 ± 2.74 zeta potential. The surface morphology was confirmed through transmission electron microscopy (TEM) and atomic force microscopy (AFM). The in vitro studies revealed that PDNG NPs exhibited selective anticancer potential in breast cancer cells, and induced apoptosis with S-phase inhibition via an increase in intrinsic reactive oxygen species (ROS) and altering the mitochondrial potential. The results also signified the efficient uptake of nanoparticles encapsulated drugs by cells besides elevating the caspase level suggesting programmed cell death induction upon treatment. In vivo studies results revealed better half-life (27.35 ± 1.58 and 11.98 ± 1.21 h for doxorubicin and naringenin) with higher plasma drug concentration. In vivo biodistribution study was also in accordance with the in vitro studies and in line with the in vivo pharmacokinetic. In vivo tumor regression assay portrayed that the formulation PDNG halts the tumor growth and lessen the tumor volume with the stable bodyweight of the mice. Conclusively, the dual delivery approach was beneficial and highly effective against tumor-induced mice.

2.
Food Chem Toxicol ; 147: 111887, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33253764

ABSTRACT

The symptoms associated with Covid-19 caused by SARS-CoV-2 in severe conditions can cause multiple organ failure and fatality via a plethora of mechanisms, and it is essential to discover the efficacious and safe drug. For this, a successful strategy is to inhibit in different stages of the SARS-CoV-2 life cycle and host cell reactions. The current review briefly put forth the summary of the SARS-CoV-2 pandemic and highlight the critical areas of understanding in genomics, proteomics, medicinal chemistry, and natural products derived drug discovery. The review further extends to briefly put forth the updates in the drug testing system, biologics, biophysics, and their advances concerning SARS-CoV-2. The salient features include information on SARS-CoV-2 morphology, genomic characterization, and pathophysiology along with important protein targets and how they influence the drug design and development against SARS-CoV-2 and a concerted and integrated approach to target these stages. The review also gives the status of drug design and discovery to identify the drugs acting on critical targets in SARS-CoV-2 and host reactions to treat Covid-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Biological Products , Drug Design , Drug Discovery , Humans , Pandemics , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure
3.
J Biochem Mol Toxicol ; 35(2): e22640, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33078895

ABSTRACT

Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 µM CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Survival/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , DNA Damage , DNA Repair , Humans , Lung Neoplasms/metabolism , Oxidative Stress/drug effects , Proliferating Cell Nuclear Antigen/metabolism , Reactive Oxygen Species/metabolism
4.
Plant Physiol Biochem ; 156: 304-313, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32992277

ABSTRACT

Crop plants require an optimum range of temperature for normal growth and development however high temperature can adversely affect the plants, induce oxidative stress and disintegrate biomolecules especially DNA and proteins. In wheat, high temperature stress (35-40 °C) during ripening stage hampers the yield tremendously. In this study, we assessed high temperature (HT) induced oxidative stress, subsequent DNA damage and role of priming in stress tolerance by analyzing DNA repair enzyme Triticum aestivum AP endonuclease (TaApe1L). Sixteen days old seedlings of wheat varieties PBW 550 and PBW 343 were primed with mild drought and exposed to HT (38 °C) for 2, 4, and 6 h. Hydrogen peroxide (H2O2) was used as oxidative stress marker and quantified on regular time intervals. DNA damage was analyzed by DNA laddering and TaApe1L gene expression was analyzed using RT PCR and western blotting. Phylogenetic analysis of Ape1 revealed presence of some key amino acids that are evolutionary conserved. A significant increase in H2O2 content was observed after 6 h of exposure especially in PBW 343. Similarly, the DNA damage was also increased with HT exposure especially in PBW 343. The TaApe1L mRNA expression increased after priming in both the varieties after 4 h. But APE1 protein expression was higher in PBW 343, which can be correlated with DNA damage and repair. Lastly, it can be concluded that there is varietal difference in the HT sensitivity but 6 h exposure was detrimental to both the varieties. Also, drought priming improved HT tolerance by over expressing APE1.


Subject(s)
DNA Damage , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Hot Temperature , Oxidative Stress , Triticum/enzymology , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Hydrogen Peroxide , Phylogeny , Triticum/genetics
5.
ACS Appl Bio Mater ; 3(11): 7789-7799, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019519

ABSTRACT

Development of a biodegradable nanoplatform poly(lactic-co-glycolic acid) (PLGA) for co-delivery of two drugs is hugely imperative and beneficial in anticancer therapeutics. In this study, co-delivery of a natural phytoconstituent, crocin (carotenoid), and a commonly prescribed drug, doxorubicin, was attempted using a nanoparticulate platform in the form of PLGA nanoparticles. Doxorubicin was chemically conjugated, while crocin was encapsulated physically in prepared PLGA nanoparticles (PDCR NPs). Prepared NPs were well-characterized for size, ζ, and surface morphology. PDCR NPs were of 174.2 ± 1.57 nm in size. The transmission electron microscopy (TEM) and atomic force microscopy (AFM) images revealed the spherical shape and smooth surface morphology of the nanoparticles, respectively. The entrapment efficiency and drug loading were found to be 58.95 ± 2.58 and 13.89 ± 1.09%, respectively. The drug release pattern of PDCR NPs showed a sustained and controlled release pattern throughout 48 h in PBS buffer pH 7.4 and acetate buffer pH 6.5. PDCR NPs were significantly less hemolytic than doxorubicin (p < 0.0001). Investigational formulation selectively produced cytotoxic effects on breast cancer cells via decreasing reactive oxygen species (ROS) and altering the mitochondrial potential that led to apoptosis with cell-cycle arrest at the G2/M phase. Prepared NPs were able to upregulate the caspase levels as well as efficient uptake by cells in a time-dependent manner. In vivo plasma drug profile studies in healthy rats revealed prolonged persistence of crocin and doxorubicin in systemic circulation. Additionally, the PDCR NPs portrayed reduced tumor volume as compared to control groups in the tumor-induced animal studies, which were favorable. Conclusively, the co-delivery of natural anticancer bioactive crocin along with doxorubicin in PDCR NPs provides a possible controlled-release nanoplatform for efficient drug delivery in vitro and in vivo.

6.
ACS Chem Neurosci ; 10(1): 252-265, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30296051

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial pathogenesis. Monoamine oxidase (MAO) and acetylcholinesterase enzymes (AChE) are potential targets for the treatment of AD. A total of 15 new propargyl containing 4,6-diphenylpyrimidine derivatives were synthesized and screened for the MAO and AChE inhibition activities along with ROS production inhibition and metal-chelation potential. All the synthesized compounds were found to be selective and potent inhibitors of MAO-A and AChE enzymes at nanomolar concentrations. VB1 was found to be the most potent MAO-A and BuChE inhibitor with IC50 values of 18.34 ± 0.38 nM and 0.666 ± 0.03 µM, respectively. It also showed potent AChE inhibition with an IC50 value of 30.46 ± 0.23 nM. Compound VB8 was found to be the most potent AChE inhibitor with an IC50 value of 9.54 ± 0.07 nM and displayed an IC50 value of 1010 ± 70.42 nM against the MAO-A isoform. In the cytotoxic studies, these compounds were found to be nontoxic to the human neuroblastoma SH-SY5Y cells even at 25 µM concentration. All the compounds were found to be reversible inhibitors of MAO-A and AChE enzymes. In addition, these compounds also showed good neuroprotective properties against 6-OHDA- and H2O2-induced neurotoxicity in SH-SY5Y cells. All the compounds accommodate nicely to the hydrophobic cavity of MAO-A and AChE enzymes. In the molecular dynamics simulation studies, both VB1 and VB8 were found to be stable in the respective cavities for 30 ns. Thus, 4,6-diphenylpyrimidine derivatives can act as promising leads in the development of dual-acting inhibitors targeting MAO-A and AChE enzymes for the treatment of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/enzymology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase/metabolism , Pyrimidines/chemical synthesis , Alzheimer Disease/drug therapy , Cell Line, Tumor , Cholinesterase Inhibitors/therapeutic use , Humans , Monoamine Oxidase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Structure-Activity Relationship
7.
Metab Brain Dis ; 32(6): 2045-2061, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28861684

ABSTRACT

Amyloid beta (Aß) peptide deposition is the primary cause of neurodegeneration in Alzheimer's disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aß-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aß(25-35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aß(25-35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol ß), and PARP1 were found to be downregulated upon treatment with MCP, Aß(25-35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol ß, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aß(25-35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1's association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.


Subject(s)
Amyloid beta-Peptides/pharmacology , Cell Survival/drug effects , Curcumin/pharmacology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Organophosphates/pharmacology , Peptide Fragments/pharmacology , Cell Line, Tumor , Chlorpyrifos/pharmacology , Humans , Monocrotophos/pharmacology , Neurons/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
8.
Int J Exp Pathol ; 98(2): 52-66, 2017 04.
Article in English | MEDLINE | ID: mdl-28439920

ABSTRACT

Amino acid metabolism is a significant metabolic activity in humans, especially of sulphur-containing amino acids, methionine and cysteine (Cys). Cys is cytotoxic and neurotoxic in nature; hence, mammalian cells maintain a constant intracellular level of Cys. Metabolism of Cys is mainly regulated by two thiol dioxygenases: cysteine dioxygenase (CDO) and 2-aminoethanethiol dioxygenase (ADO). CDO and ADO are the only human thiol dioxygenases reported with a role in Cys metabolism and localized to mitochondria. This metabolic pathway is important in various human disorders, as it is responsible for the synthesis of antioxidant glutathione and is also for the synthesis of hypotaurine and taurine. CDO is the most extensively studied protein, whose high-resolution crystallographic structures have been solved. As compared to CDO, ADO is less studied, even though it has a key role in cysteamine metabolism. To further understand ADO's structure and function, the three-dimensional structures have been predicted from I-TASSER and SWISS-MODEL servers and validated with PROCHECK software. Structural superimposition approach using iPBA web server further confirmed near-identical structures (including active sites) for the predicted protein models of ADO as compared to CDO. In addition, protein-protein interaction and their association in patho-physiology are crucial in understanding protein functions. Both ADO and CDO interacting partner profiles have been presented using STRING database. In this study, we have predicted a 3D model structure for ADO and summarized the biological roles and the pathological consequences which are associated with the altered expression and functioning of ADO and CDO in case of cancer, neurodegenerative disorders and other human diseases.


Subject(s)
Cysteine Dioxygenase/metabolism , Cysteine/metabolism , Animals , Carotenoids/genetics , Carotenoids/metabolism , Cysteine Dioxygenase/chemistry , Cysteine Dioxygenase/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Glutathione/metabolism , Humans , Liver/enzymology , Methionine/metabolism , Models, Molecular , Oxygenases/genetics , Oxygenases/metabolism , Sulfhydryl Compounds/metabolism , Taurine/analogs & derivatives , Taurine/metabolism
9.
Exp Mol Med ; 46: e106, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25033834

ABSTRACT

Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a 'hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Phytochemicals/therapeutic use , Animals , DNA Damage , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/analysis , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Humans , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Oxidative Stress , Phytochemicals/pharmacology , Polymorphism, Genetic , Protein Interaction Maps
10.
Mitochondrion ; 16: 38-49, 2014 May.
Article in English | MEDLINE | ID: mdl-24220222

ABSTRACT

Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.


Subject(s)
DNA Repair , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Neurons/physiology , DNA/drug effects , DNA Damage , DNA Repair Enzymes/metabolism , Humans , Protein Binding , Protein Multimerization , Reactive Nitrogen Species/toxicity , Reactive Oxygen Species/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...