Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 129: 155640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714091

ABSTRACT

BACKGROUND: The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE: The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS: We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION: In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.


Subject(s)
Antiprotozoal Agents , Artemisinins , Leishmania , Peroxides , Leishmania/drug effects , Peroxides/pharmacology , Peroxides/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Humans , Leishmaniasis/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology
2.
Sci Adv ; 10(11): eadk8669, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489365

ABSTRACT

Two-dimensional van der Waals (vdW) magnetic materials hold promise for the development of high-density, energy-efficient spintronic devices for memory and computation. Recent breakthroughs in material discoveries and spin-orbit torque control of vdW ferromagnets have opened a path for integration of vdW magnets in commercial spintronic devices. However, a solution for field-free electric control of perpendicular magnetic anisotropy (PMA) vdW magnets at room temperatures, essential for building compact and thermally stable spintronic devices, is still missing. Here, we report a solution for the field-free, deterministic, and nonvolatile switching of a PMA vdW ferromagnet, Fe3GaTe2, above room temperature (up to 320 K). We use the unconventional out-of-plane anti-damping torque from an adjacent WTe2 layer to enable such switching with a low current density of 2.23 × 106 A cm-2. This study exemplifies the efficacy of low-symmetry vdW materials for spin-orbit torque control of vdW ferromagnets and provides an all-vdW solution for the next generation of scalable and energy-efficient spintronic devices.

3.
Nat Commun ; 15(1): 1485, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374025

ABSTRACT

Recent discovery of emergent magnetism in van der Waals magnetic materials (vdWMM) has broadened the material space for developing spintronic devices for energy-efficient computation. While there has been appreciable progress in vdWMM discovery, a solution for non-volatile, deterministic switching of vdWMMs at room temperature has been missing, limiting the prospects of their adoption into commercial spintronic devices. Here, we report the first demonstration of current-controlled non-volatile, deterministic magnetization switching in a vdW magnetic material at room temperature. We have achieved spin-orbit torque (SOT) switching of the PMA vdW ferromagnet Fe3GaTe2 using a Pt spin-Hall layer up to 320 K, with a threshold switching current density as low as [Formula: see text]1.69 [Formula: see text] 106 A cm-2 at room temperature. We have also quantitatively estimated the anti-damping-like SOT efficiency of our Fe3GaTe2/Pt bilayer system to be [Formula: see text], using the second harmonic Hall voltage measurement technique. These results mark a crucial step in making vdW magnetic materials a viable choice for the development of scalable, energy-efficient spintronic devices.

4.
PLoS Negl Trop Dis ; 17(4): e0011231, 2023 04.
Article in English | MEDLINE | ID: mdl-37075066

ABSTRACT

BACKGROUND: The potential reservoirs of visceral leishmaniasis (VL) in South Asia include asymptomatic and relapsed cases of VL, along with patients with post kala-azar dermal leishmaniasis (PKDL). Accordingly, accurate estimation of their parasite load is pivotal for ensuring disease elimination, presently targeted for 2023. Serological tests cannot accurately detect relapses and/or monitor treatment effectiveness, and therefore, parasite antigen/nucleic acid based detection assays remain the only viable option. An excellent option is the quantitative polymerase chain reaction (qPCR) but the high cost, technical expertise and time involved precludes its wider acceptability. Accordingly, the recombinase polymerase amplification (RPA) assay operated in a mobile suitcase laboratory has emerged not simply as a diagnostic tool for leishmaniasis but also to monitor the disease burden. METHODOLOGY/PRINCIPAL FINDINGS: Using total genomic DNA isolated from peripheral blood of confirmed VL cases (n = 40) and lesional biopsies of PKDL cases (n = 64), the kinetoplast-DNA based qPCR and RPA assay was performed and parasite load expressed as Cycle threshold (Ct) and Time threshold (Tt) respectively. Using qPCR as the gold standard, the diagnostic specificity and sensitivity of RPA in naïve cases of VL and PKDL was reiterated. To assess the prognostic potential of the RPA, samples were analyzed immediately at the end of treatment or ≥6 months following completion of treatment. In cases of VL, the RPA assay in terms of cure and detection of a relapse case showed 100% concordance with qPCR. In PKDL following completion of treatment, the overall detection concordance between RPA and qPCR was 92.7% (38/41). At the end of treatment for PKDL, 7 cases remained qPCR positive, whereas RPA was positive in only 4/7 cases, perhaps attributable to their low parasite load. CONCLUSIONS/SIGNIFICANCE: This study endorsed the potential of RPA to evolve as a field applicable, molecular tool for monitoring parasite load, possibly at a point of care level and is worthy of consideration in resource limited settings.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Recombinases , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , DNA, Kinetoplast/genetics , Parasite Load , India , Leishmania donovani/genetics
5.
J Taibah Univ Med Sci ; 18(5): 909-916, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36852344

ABSTRACT

Objective: The study was conducted to estimate the prevalence of non-adherence to medications among patients with type 2 diabetes attending a lifestyle clinic in a tertiary care hospital in West Bengal, India; to identify the environmental barriers to self-care practices, including diet, exercise, glucose testing and medication; and to identify the socio-demographic and environmental determinants of medication non-adherence. Methods: A cross-sectional study was performed among the patients with type 2 diabetes taking oral hypoglycemic drugs and attending a lifestyle clinic of a teaching hospital in 2021. The participants were interviewed in clinical settings via a structured questionnaire in the local language. Medication adherence was assessed with Morisky Medication Adherence Scale-8 (MMAS), and environmental barriers were assessed with the Environmental Barrier Assessment Scale (EBAS). Results: Among 178 participants, a high level of adherence (MMAS score 8.0) was found among 3 (1.7%) participants, and moderate adherence (MMAS score 6.0 to 7.75) was found among 67 (37.6%; 95% CI 30.3%, 44.9%) participants. The prevalence of non-adherence was 60.7% (95% CI: 53.4%, 68.0%). The overall mean barrier score was 134 (SD 13). All environmental barrier components were distributed equally among the predictor variables except the diet score, which was lower among men (mean difference 1.3; 95% CI: 0.04, 2.5) and people with higher education (mean difference 1.8; 95% CI: 0.6, 3.1). Conclusion: The study indicated poor adherence to OHA in this population. Barriers to self-care practice and medication adherence were observed acrross all socio-economic strata. Poor medication adherence poses a major challenge to clinicians and public health experts in achieving treatment goals.

6.
Bioinspir Biomim ; 18(1)2022 11 08.
Article in English | MEDLINE | ID: mdl-36265472

ABSTRACT

The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.


Subject(s)
Robotics , Male , Humans , Semen , Muscles
7.
Nat Commun ; 13(1): 5210, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138011

ABSTRACT

An intracellular antenna can open up new horizons for fundamental and applied biology. Here, we introduce the Cell Rover, a magnetostrictive antenna which can operate wirelessly inside a living cell and is compatible with 3D biological systems. It is sub-mm in size, acoustically actuated by an AC magnetic field and resonantly operated at low MHz frequencies, which is ideal for living systems. We developed an injection scheme involving non-uniform magnetic fields for intracellular injection of the Cell Rovers and demonstrated their operation in fully opaque, stage VI Xenopus oocytes, for which real-time imaging with conventional technologies is challenging. We also show that they provide a pathway for multiplexing applications to individually address multiple cells or to tune to more than one antenna within the same cell for versatile functionalities. This technology forms the foundation stone that can enable the integration of future capabilities such as smart sensing, modulation as well as energy harvesting to power in-cell nanoelectronic computing and can potentially bring the prowess of information technology inside a living cell. This could lead to unprecedented opportunities for fundamental understanding of biology as well as diagnostics and therapeutics.


Subject(s)
Miniaturization , Wireless Technology , Animals , Magnetic Fields , Miniaturization/instrumentation , Oocytes , Xenopus
8.
Nat Biomed Eng ; 6(9): 1057-1073, 2022 09.
Article in English | MEDLINE | ID: mdl-36038771

ABSTRACT

Many crowded biomolecular structures in cells and tissues are inaccessible to labelling antibodies. To understand how proteins within these structures are arranged with nanoscale precision therefore requires that these structures be decrowded before labelling. Here we show that an iterative variant of expansion microscopy (the permeation of cells and tissues by a swellable hydrogel followed by isotropic hydrogel expansion, to allow for enhanced imaging resolution with ordinary microscopes) enables the imaging of nanostructures in expanded yet otherwise intact tissues at a resolution of about 20 nm. The method, which we named 'expansion revealing' and validated with DNA-probe-based super-resolution microscopy, involves gel-anchoring reagents and the embedding, expansion and re-embedding of the sample in homogeneous swellable hydrogels. Expansion revealing enabled us to use confocal microscopy to image the alignment of pre-synaptic calcium channels with post-synaptic scaffolding proteins in intact brain circuits, and to uncover periodic amyloid nanoclusters containing ion-channel proteins in brain tissue from a mouse model of Alzheimer's disease. Expansion revealing will enable the further discovery of previously unseen nanostructures within cells and tissues.


Subject(s)
Microscopy , Nanostructures , Animals , Brain/metabolism , Calcium Channels/metabolism , DNA/metabolism , Hydrogels , Mice , Microscopy/methods , Proteins/metabolism
9.
Phytomedicine ; 103: 154221, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35696799

ABSTRACT

BACKGROUND: The global burden of leishmaniasis is exacerbated by the limited repertoire of drugs, resulting in an urgent need to develop new therapeutic alternatives. Endoperoxides like ascaridole have emerged as promising anti-parasitic candidates, and its effectiveness was established in an animal model of cutaneous leishmaniasis (CL). However, its impact on Leishmania donovani parasites, causative of visceral leishmaniasis (VL) remains to be established. PURPOSE: This study aimed to delineate the underlying mechanisms contributing towards the leishmanicidal effect of ascaridole in terms of its impact on the cellular redox status and metabolic bioenergetics of L. donovani parasites. METHODOLOGY: The anti-promastigote activity of ascaridole was established by a cell viability assay in L. donovani [MHOM/IN/1983/AG83] and anti-amastigote activity by microscopy and ddPCR (droplet digital polymerase chain reaction). The cellular redox status, mitochondrial membrane potential (MMP), annexin V positivity and cell cycle arrest was evaluated by flow cytometry, while cellular and mitochondrial bioenergetics was assessed using Agilent XFp Analyzer, and the levels of ATP was measured by chemiluminescence. RESULTS: Ascaridole demonstrated strong anti-promastigote and anti-amastigote activities in l. donovani, IC50 (half maximal Inhibitory concentration) being 2.47 ± 0.18 µM and 2.00±0.34 µM respectively, while in J774.A1 and murine peritoneal macrophages, the CC50 (half maximal cytotoxic concentration) was 41.47 ± 4.89 µM and 37.58 ± 5.75 µM respectively. Ascaridole disrupted the redox homeostasis via an enhanced generation of reactive oxygen species (ROS), lipid peroxidation and concomitant depletion of thiols. However, it failed to increase the generation of mitochondrial superoxide, which minimally impacted on mitochondrial respiration and was corroborated by energy metabolism studies. Instead, ascaridole inhibited glycolysis of promastigotes, caused a loss in MMP, which translated into ATP depletion. In promastigotes, ascaridole enhanced annexin-V positivity and caused a cell cycle arrest at sub- G0/G1 phase. CONCLUSION: In summary, ascaridole displays its leishmanicidal activity possibly due to its ability to auto-generate free radicals following cleavage of its endoperoxide bridge that led to disruption of the redox homeostasis, inhibition of glycolysis and culminated in an apoptotic like cell death.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Parasites , Adenosine Triphosphate/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Cyclohexane Monoterpenes , Glycolysis , Leishmaniasis, Visceral/drug therapy , Matrix Metalloproteinases/pharmacology , Mice , Mice, Inbred BALB C , Peroxides
10.
Parasitology ; 149(8): 1085-1093, 2022 07.
Article in English | MEDLINE | ID: mdl-35535469

ABSTRACT

The gold standard for diagnosis of leishmaniasis is the microscopic detection of amastigotes/Leishman Donovan (LD) bodies, but its moderate sensitivity necessitates the development of molecular approaches. This study aimed to quantify in experimental animal models and human leishmaniasis the expression of amastigote-specific virulence genes, A2 and amastin by droplet digital polymerase chain reaction (ddPCR). Total RNA was isolated from L. donovani-infected hamsters or murine peritoneal macrophages and lesional biopsies from patients with post kala-azar dermal leishmaniasis (PKDL). Following cDNA conversion, EvaGreen-based ddPCR was performed using specific primers for A2 or amastin and parasite load expressed in copies per µL. Assay was optimized and the specificity of amastigote-specific A2 and amastin was confirmed. In hepatic and splenic tissues of L. donovani-infected hamsters and peritoneal macrophages, ddPCR demonstrated a greater abundance of A2 than amastin. Treatment of L. donovani-infected peritoneal macrophages with conventional anti-leishmanials, miltefosine and amphotericin B translated into a dose-dependent reduction in copies per µL of A2 and amastin, and the extrapolated IC50 was comparable with results obtained by counting LD bodies in Giemsa-stained macrophages. Similarly, in dermal biopsies of patients with PKDL, A2 and amastin were detected. Overall, monitoring of A2 by ddPCR can be an objective measure of parasite burden and potentially adaptable into a high throughput approach necessary for drug development and monitoring disease progression when the causative species is L. donovani.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Amphotericin B/therapeutic use , Animals , Humans , Leishmania donovani/genetics , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Mice , Parasite Load
11.
Langmuir ; 38(11): 3480-3492, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35261245

ABSTRACT

Supramolecular materials that respond to external triggers are being extensively utilized in developing spatiotemporal control in biomedical applications ranging from drug delivery to diagnostics. The present article describes the development of self-assembled vesicles in 1:9 (v/v), tetrahydrofuran (THF)-water by naphthalimide-based azo moiety containing amphiphile (NI-Azo) where azo moiety would act as the stimuli-responsive junction. The self-assembly of NI-Azo took place through H-type of aggregation. Microscopic and spectroscopic analyses confirmed the formation of supramolecular vesicles with a dimension of 200-250 nm. Azo (-N═N-) moiety is known to get reduced to amine derivatives in the presence of the azoreductase enzyme, which is overexpressed in the hypoxic microenvironment. The absorbance intensity of this characteristic azo (-N═N-) moiety of NI-Azo (1:9 (v/v), THF-water) at 458 nm got diminished in the presence of both extracellular and intracellular bacterial azoreductase extracted from Escherichia coli bacteria. The same observation was noted in the presence of sodium dithionite (mimic of azoreductase), indicating that azoreductase/sodium dithionite induced azo bond cleavage of NI-Azo, which was confirmed by matrix-assisted laser desorption ionization time-of-flight spectrometric data of the corresponding aromatic amine fragments. The anticancer drug, curcumin, was encapsulated inside NI-Azo vesicles that successfully killed B16F10 cells (cancer cells) in CoCl2-induced hypoxic environment owing to the azoreductase-responsive release of drug. The cancer cell killing efficiency by curcumin-loaded NI-Azo vesicles in the hypoxic condition was 2.15-fold higher than that of the normoxic environment and 2.4-fold higher compared to that of native curcumin in the hypoxic condition. Notably, cancer cell killing efficiency of curcumin-loaded NI-Azo vesicles was 4.5- and 1.9-fold higher than that of noncancerous NIH3T3 cells in normoxic and hypoxic environments, respectively. Cell killing was found to be primarily through the early apoptotic pathway.


Subject(s)
Curcumin , Naphthalimides , Amines , Animals , Azo Compounds/chemistry , Curcumin/pharmacology , Dithionite , Hypoxia , Mice , NIH 3T3 Cells , Water
13.
Arch Pharm (Weinheim) ; 355(4): e2100440, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106845

ABSTRACT

Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 µg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis , Tuberculosis , Animals , Antiprotozoal Agents/pharmacology , Mice , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Tuberculosis/drug therapy
14.
iScience ; 24(12): 103513, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34934930

ABSTRACT

Sensors are ubiquitous in modern society because of their wide applications in healthcare, security, forensic industries as well as environmental protection. Specifically, sensors which can be microfabricated employing very-large-scale-integration (VLSI) compatible microfabrication techniques are particularly desirable. This is because they can provide several advantages: small size, low cost, and possibility of mass fabrication. 2D materials are a promising building block for such sensors. Their atomically thin nature, flat surfaces and ability to form van der Waals hetero junctions opens up the pathway for versatile functionalities. Here, we review 2D material-based field-effect-transistors (FETs) and nano-electro-mechanical systems (NEMs) for applications in detecting different gases, chemicals, and biomolecules. We will provide insights into the unique advantages of these materials for these sensing applications and discuss the fabrication methods, detection schemes and performance pertaining to these technologies. Finally, we will discuss the current challenges and prospects for this field.

15.
Acta Neuropathol Commun ; 9(1): 180, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749824

ABSTRACT

Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson's Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.


Subject(s)
Axonal Transport/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Receptors, Presynaptic/metabolism , alpha-Synuclein/metabolism , Animals , Enzyme Inhibitors , Female , Hippocampus/cytology , Hippocampus/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Neurons/metabolism , Parkinson Disease/metabolism , Pregnancy , Primary Cell Culture , Vesicular Glutamate Transport Protein 1/metabolism
16.
J Family Med Prim Care ; 10(1): 378-386, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34017757

ABSTRACT

BACKGROUND: Smartphones are now an important gadget for us, but the many are getting addicted to it. Researchers showed that smartphone addiction and late-night usage affects sleep quality. Indian nurses are already facing a heavy burden of depression and present position of nurses is quite insecure. Very few studies were performed over nursing students and that leads to the selection of this topic for my research. METHODOLOGY: It was a cross-sectional, observational, and questionnaire-based study, performed over B.Sc. Nursing students of University College of Nursing, WBUHS. The questionnaire has three parts. The first part was for sociodemographic variables, the second part measures the addictive phenomena associated with smartphone overuse using a Smartphone Addiction Scale (SAS), the last part was intended to measure the sleep quality by using Pittsburgh Sleep Quality Index (PSQI). Collected data was compiled and analyzed with the help of MS-Excel from Microsoft Office Package-2016. RESULTS: Out of 91 students, 46 students were found to be not addicted, while 45 were addicted to smartphone, as measured by SAS. On PSQI, 17.58% students were found to be good sleepers, while 82.42% came out to be poor sleepers. Significant association was found between age and smartphone addiction (p=0.000031) and between daily calls and sleep quality (p=0.025333). CONCLUSION: It can be finally concluded that increase in smartphone usage is now a serious matter of concern and lower age groups are more susceptible towards it. Broad-spectrum studies involving multiple institutions is needed to reveal the bigger picture.

17.
Soft Matter ; 17(8): 2170-2180, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33448273

ABSTRACT

The precise control of supramolecular self-assembly is gaining utmost interest for the demanding applications of manifested nano-architecture across the scientific domain. This study delineates the morphological transformation of naphthalene diimide (NDI) derived amphiphiles with varying water content in dimethyl sulfoxide (DMSO) and the selective sensing of lipase using its aggregation-induced emission (AIE) properties. To this end, NDI-based, benzyl alcohol protected alkyl chain (C1, C5, and C10) linked amphiphilic molecules (NDI-1,2,3) were synthesized. Among the synthesized amphiphiles, benzyl ester linked C5 tailored naphthalene diimide (NDI-2) exhibited AIE with an emission maximum at 490 nm in a DMSO-water binary solvent system from fw = 30% and above water content. The fibrous morphology of NDI-2 at fw = 30% got gradually transformed to spherical aggregated particles along with steady increment in the emission intensity upon increasing the amount of water in DMSO. At fw = 99% water in DMSO, complete transformation to fluorescent organic nanoparticles (FONPs) was observed. Microscopic and spectroscopic techniques demonstrated the solvent driven morphological transformation and the AIE property of NDI-2. Moreover, this AIE of NDI-2 FONPs was employed in the selective turn-off sensing of lipase against many other enzymes including esterase, through hydrolysis of a benzyl ester linkage with a limit of detection 10.0 ± 0.8 µg L-1. The NDI-2 FONP also exhibited its lipase sensing efficiency in vitro using a human serum sample.


Subject(s)
Imides , Lipase , Nanoparticles , Naphthalenes , Humans , Solvents
18.
J Mater Chem B ; 9(2): 494-507, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33300911

ABSTRACT

Fluorescent organic nanoparticles (FONPs) have attracted considerable attention as a practical and effective platform for sensing and imaging applications. The present article delineates the fabrication of FONPs derived from the naphthalimide based histidine appended amphiphile, NID. The self-assembly of NID in 99 vol% water in DMSO led to the formation of FONPs through J-type aggregation. Aggregation-induced emission (AIE) was observed due to the pre-associated excimer of NID with bluish green emission at 470 nm along with intramolecular charge transfer (ICT). The emission of NID FONPs was utilized for selective sensing of Fe3+ and bioimaging of Fe3+ inside mammalian cells. The fluorescence intensity of the FONPs was quenched with the gradual addition of Fe3+ due to the formation of a 1 : 1 stoichiometric complex with the histidine residue of NID. The morphology of the FONPs transformed from spherical to spindle upon the complex formation of NID with Fe3+. The limit of detection (LOD) of this AIE based turn-off chemosensor for Fe3+ was found to be 12.5 ± 1.2 µM having high selectivity over other metal ions. On the basis of the very low cytotoxicity and selective sensing of Fe3+, NID FONPs were successfully employed for bioimaging of Fe3+ ions through fluorescence quenching within mammalian cells (NIH3T3, B16F10). Considering the varying oxidative stress inside different cells, NID FONPs were used for detecting Fe2+ to Fe3+ redox state transition selectively inside cancer cells (B16F10) in comparison to non-cancerous cells (NIH3T3). Selective sensing of cancer cells was substantiated by co-culture experiment and flow cytometry. Hence, NID FONPs can be a selective diagnostic probe for cancer cells owing to their higher H2O2 content.


Subject(s)
Iron/chemistry , Nanoparticles/chemistry , Naphthalimides/chemistry , Animals , Disease Models, Animal , Humans , Mice
19.
J Family Med Prim Care ; 9(9): 4570-4575, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33209765

ABSTRACT

BACKGROUND: Regular vigilance over infant feeding practices in the community is necessary for assessment of optimal growth and development and the intervention if needed. OBJECTIVE: To illustrate infant feeding practices, and socio-demographically correlated time like when weaning starts, the challenges met by mothers, and the types of complementary feeding adopted. METHODS: A structured pretested and predesigned questionnaire was used to collect information regarding sociodemographic, detail information regarding initiation and duration of breastfeeding, age of complementary feeding and type of food given during complementary feeding, minimum dietary diversity and minimum meal frequency, and also advice given during child feeding session. RESULTS: The study revealed that it was a predominantly Hindu tribal community where majority of infant were female and belong to joint families. Most of the mother had completed high secondary school and were housewives and belong to upper lower social class. Majority of women had more than two children, and rate of delivery at government institution was more than private institution and home delivery. Exclusive breastfeeding was practiced among 78% of infants, 46% had started breastfeeding within 1 h of birth. In total, 48% of infants were given prelacteal feed, and colostrum feeding was practiced among 62% of infants. Complementary feeding was given by 82% of infants and minimum dietary diversity, and minimum meal frequency was found among 77 and 85%, respectively. CONCLUSION: This community-based study carried out among tribal population of Kalyani showed that exclusive breastfeeding and other domains like complementary feeding and minimum dietary diversity are almost satisfactory.

20.
Parasitology ; 146(4): 511-520, 2019 04.
Article in English | MEDLINE | ID: mdl-30392476

ABSTRACT

Endoperoxides kill malaria parasites via cleavage of their endoperoxide bridge by haem or iron, leading to generation of cytotoxic oxygen-centred radicals. In view of the Leishmania parasites having a relatively compromised anti-oxidant defense and high iron content, this study aims to establish the underlying mechanism(s) accounting for the apoptotic-like death of Leishmania promastigotes by artemisinin, an endoperoxide. The formation of reactive oxygen species was confirmed by flow cytometry and was accompanied by inhibition of mitochondrial complexes I-III and II-III. However, this did not translate into a generation of mitochondrial superoxide or decrease in oxygen consumption, indicating minimal impairment of the electron transport chain. Artemisinin caused depolarization of the mitochondrial membrane along with a substantial depletion of adenosine triphosphatase (ATP), but it was not accompanied by enhancement of ATP hydrolysis. Collectively, the endoperoxide-mediated radical formation by artemisinin in Leishmania promastigotes was the key step for triggering its antileishmanial activity, leading secondarily to mitochondrial dysfunction indicating that endoperoxides represent a promising therapeutic strategy against Leishmania worthy of pharmacological consideration.


Subject(s)
Antiprotozoal Agents/chemistry , Artemisinins/chemistry , Leishmania/drug effects , Mitochondria/drug effects , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...