Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(15)2023 07 26.
Article in English | MEDLINE | ID: mdl-37566017

ABSTRACT

Intravesical immunotherapy with Bacillus Calmette-Guerin (BCG) is a standard of care therapy for non-muscle invasive bladder cancer (NMIBC), which accounts for about 75% of newly diagnosed urothelial cancer. However, given the frequent recurrence and progression, identification of a pre-treatment biomarker capable of predicting responsiveness to BCG in NMIBC is of utmost importance. Herein, using multiparametric flow cytometry, we characterized CD8+ T cells from peripheral blood and tumor tissues collected from 27 pre-BCG patients bearing NMIBC to obtain immune correlates of bladder cancer prognosis and responsiveness to BCG therapy. We observed that intratumoral CD8+ T cell subsets were highly heterogenous in terms of their differentiation state and exist at different proportions in tumor tissues. Remarkably, among the different CD8+ T cell subsets present in the tumor tissues, the frequency of the terminally exhausted-like CD8+ T cell subset, marked as PD1+CD38+Tim3+ CD8+ T cells, was inversely correlated with a favorable outcome for patients and a responsiveness to BCG therapy. Moreover, we also noted that the intratumoral abundance of the progenitor exhausted-like PD1+CD8+ T cell subset in pre-BCG NMIBC tumor tissues was indicative of better recurrence-free survival after BCG. Collectively, our study led to the identification of biomarkers that can predict the therapeutic responsiveness of BCG in NMIBC.


Subject(s)
BCG Vaccine , Non-Muscle Invasive Bladder Neoplasms , Urinary Bladder Neoplasms , Humans , BCG Vaccine/therapeutic use , CD8-Positive T-Lymphocytes/pathology , Hepatitis A Virus Cellular Receptor 2 , Immunotherapy , Non-Muscle Invasive Bladder Neoplasms/drug therapy , Non-Muscle Invasive Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
2.
Cell Rep ; 42(7): 112794, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459233

ABSTRACT

Relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia-initiating stem cells (LICs) that are typically not targeted by most existing therapies. Using a murine AML model, human AML cell lines, and patient samples, we show that AML LICs are sensitive to endogenous and exogenous cyclopentenone prostaglandin-J (CyPG), Δ12-PGJ2, and 15d-PGJ2, which are increased upon dietary selenium supplementation via the cyclooxygenase-hematopoietic PGD synthase pathway. CyPGs are endogenous ligands for peroxisome proliferator-activated receptor gamma and GPR44 (CRTH2; PTGDR2). Deletion of GPR44 in a mouse model of AML exacerbated the disease suggesting that GPR44 activation mediates selenium-mediated apoptosis of LICs. Transcriptomic analysis of GPR44-/- LICs indicated that GPR44 activation by CyPGs suppressed KRAS-mediated MAPK and PI3K/AKT/mTOR signaling pathways, to enhance apoptosis. Our studies show the role of GPR44, providing mechanistic underpinnings of the chemopreventive and chemotherapeutic properties of selenium and CyPGs in AML.


Subject(s)
Leukemia, Myeloid, Acute , Selenium , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases , Signal Transduction , Cell Line
3.
Cancer Res ; 82(14): 2640-2655, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35648389

ABSTRACT

Effector CD8+ T cells rely primarily on glucose metabolism to meet their biosynthetic and functional needs. However, nutritional limitations in the tumor microenvironment can cause T-cell hyporesponsiveness. Therefore, T cells must acquire metabolic traits enabling sustained effector function at the tumor site to elicit a robust antitumor immune response. Here, we report that IL12-stimulated CD8+ T cells have elevated intracellular acetyl CoA levels and can maintain IFNγ levels in nutrient-deprived, tumor-conditioned media (TCM). Pharmacological and metabolic analyses demonstrated an active glucose-citrate-acetyl CoA circuit in IL12-stimulated CD8+ T cells supporting an intracellular pool of acetyl CoA in an ATP-citrate lyase (ACLY)-dependent manner. Intracellular acetyl CoA levels enhanced histone acetylation, lipid synthesis, and IFNγ production, improving the metabolic and functional fitness of CD8+ T cells in tumors. Pharmacological inhibition or genetic knockdown of ACLY severely impaired IFNγ production and viability of CD8+ T cells in nutrient-restricted conditions. Furthermore, CD8+ T cells cultured in high pyruvate-containing media in vitro acquired critical metabolic features of IL12-stimulated CD8+ T cells and displayed improved antitumor potential upon adoptive transfer in murine lymphoma and melanoma models. Overall, this study delineates the metabolic configuration of CD8+ T cells required for stable effector function in tumors and presents an affordable approach to promote the efficacy of CD8+ T cells for adoptive T-cell therapy. SIGNIFICANCE: IL12-mediated metabolic reprogramming increases intracellular acetyl CoA to promote the effector function of CD8+ T cells in nutrient-depleted tumor microenvironments, revealing strategies to potentiate the antitumor efficacy of T cells.


Subject(s)
ATP Citrate (pro-S)-Lyase , Neoplasms , ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Humans , Interleukin-12 , Mice , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...