Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Hum Genet ; 84(3): 303-312, 2020 05.
Article in English | MEDLINE | ID: mdl-32115698

ABSTRACT

Oculocutaneous albinism (OCA) is a group of congenital autosomal recessive disorders with seven known subtypes (OCA1-OCA7) characterized by loss or absence of pigmentation in the skin, hair, and eyes. OCA1, caused by pathogenic variations in the tyrosinase (TYR) gene, has been documented to be the most prevalent subtype across the world including India. In the present study, we recruited 53 OCA-affected individuals from 45 unrelated families belonging to 20 different marriage groups/ethnicities of 15 different districts of West Bengal. We took a targeted sequencing-based approach to find the causal variations in the TYR gene. We report here identification of two novel potentially pathogenic variations [NM_000372.4:c.614C>T, NP_000363.1:p.(Pro205Leu), and NM_000372.4:c.1036+1=/G>T], one novel synonymous TYR variant [NM_000372.4:c.204=/A>G, NP_000363.1:p.(Gln68=)], two pathogenic variations documented for the first time in Indian OCA cases [NM_000372.4:c.1147G>A, NP_000363.1:p.(Asp383Asn), and NM_000372.4:c.585G>A, NP_000363.1:p.(Trp195*)], along with nine previously reported pathogenic variants in 36 out of 53 (∼68%) patients recruited. We report common haplotype backgrounds for the two most prevalent variations [NM_000372.4:c.124G>A, NM_000372.4:c.832C>T] in cases belonging to different marriage/ethnic groups, suggesting a possible founder effect. To our knowledge, this is the most comprehensive genetic study on OCA1 from India, firmly establishing OCA1 as the commonest form of albinism in this part of the world.


Subject(s)
Albinism, Oculocutaneous/genetics , Monophenol Monooxygenase/genetics , Albinism, Oculocutaneous/ethnology , DNA Mutational Analysis , Ethnicity , Founder Effect , Haplotypes , Humans , India , Pedigree
2.
Biomed Res Int ; 2014: 673895, 2014.
Article in English | MEDLINE | ID: mdl-25003127

ABSTRACT

Connexin50 (Cx50) mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.


Subject(s)
Cataract/congenital , Cataract/genetics , Connexins/chemistry , Connexins/genetics , Eye Proteins/chemistry , Eye Proteins/genetics , Intracellular Space/metabolism , Mutant Proteins/metabolism , Mutation, Missense/genetics , Static Electricity , Amino Acids/genetics , Gap Junctions/metabolism , Humans , Models, Molecular , Protein Transport , Structural Homology, Protein , Structure-Activity Relationship
4.
SELECTION OF CITATIONS
SEARCH DETAIL
...