Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(36): 19727-19745, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37642533

ABSTRACT

All-solid-state sodium-ion batteries (SIBs) have the potential to offer large-scale, safe, cost-effective, and sustainable energy storage solutions by supplementing the industry-leading lithium-ion batteries. However, for the enhanced bulk properties of SIB components (e.g., solid electrolytes), a comprehensive understanding of their atomic-scale structure and the dynamic behavior of sodium (Na) ions is essential. Here, we utilize a robust multinuclear (23Na, 125Te, 25Mg, and 67Zn) magnetic resonance approach to explore a novel Mg/Zn homogeneously mixed-cation honeycomb-layered oxide Na2MgxZn2-xTeO6 solid solution series. These new intermediate compounds exhibit tailorable bulk Na-ion conductivity (σ) with the highest σ = 0.14 × 10-4 S cm-1 for Na2MgZnTeO6 at room temperature suitable for SIB solid electrolyte applications as observed by powder electrochemical impedance spectroscopy (EIS). A combination of powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and field emission scanning electron microscopy (FESEM) reveals highly crystalline phase-pure compounds in the P6322 space group. We show that the Mg/Zn disorder is random within the honeycomb layers using 125Te nuclear magnetic resonance (NMR) and resolve multiple Na sites using two-dimensional (triple-quantum magic-angle spinning (3QMAS)) 23Na NMR. The medium-range disorder in the honeycomb layer is revealed through the combination of 25Mg and 67Zn NMR, complemented by electronic structure calculations using density functional theory (DFT). Furthermore, we expose very fast local Na-ion hopping processes (hopping rate, 1/τNMR = 0.83 × 109 Hz) by using a laser to achieve variable high-temperature (∼860 K) 23Na NMR, which are sensitive to different Mg/Zn ratios. The Na2MgZnTeO6 with maximum Mg/Zn disorder displays the highest short-range Na-ion dynamics among all of the solid solution members.

2.
Inorg Chem ; 62(19): 7491-7502, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37116178

ABSTRACT

Complete substitution of Li atoms for Ag atoms in AgGaSe2 and AgInSe2 was achieved, resulting in the solid solutions LixAg1-xGaSe2 and LixAg1-xInSe2. The detailed crystal structures were determined by single-crystal X-ray diffraction and solid-state 7Li nuclear magnetic resonance spectroscopy, which confirm that Li atoms occupy unique sites and disorder only with Ag atoms. The tetragonal CuFeS2-type structure (space group I4̅2d) was retained within the entirety of the Ga-containing solid solution LixAg1-xGaSe2, which is noteworthy because the end-member LiGaSe2 normally adopts the orthorhombic ß-NaFeO2-type structure (space group Pna21). These structures are closely related, being superstructures of the cubic sphalerite and hexagonal wurtzite prototypes adopted by diamond-like semiconductors. For the In-containing solid solution LixAg1-xInSe2, the structure transforms from the tetragonal to orthorhombic forms as the Li content increases past x = 0.50. The optical band gaps increase gradually with higher Li content, from 1.8 to 3.4 eV in LixAg1-xGaSe2 and from 1.2 to 2.5 eV in LixAg1-xInSe2, enabling control to desired values, while the second harmonic generation responses become stronger or are similar to those of benchmark infrared nonlinear optical materials such as AgGaS2. All members of these solid solutions remain congruently melting at accessible temperatures between 800 and 900 °C. Electronic structure calculations support the linear trends seen in the optical band gaps and confirm the mostly ionic character present in Li-Se bonds, in contrast to the more covalent character in Ga-Se or In-Se bonds.

3.
Chem Sci ; 12(9): 3253-3263, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-34164094

ABSTRACT

Tin halide perovskites are promising candidates for lead-free photovoltaic and optoelectronic materials, but not all of them have been well characterized. It is essential to determine how the bulk photophysical properties are correlated with their structures at both short and long ranges. Although CsSnCl3 is normally stable in the cubic perovskite structure only above 379 K, it was prepared as a metastable phase at room temperature. The transition from the cubic to the monoclinic phase, which is the stable form at room temperature, was tracked by solid-state 133Cs NMR spectroscopy and shown to take place through a first-order kinetics process. The complete solid solution CsSn(Cl1-x Br x )3 (0 ≤ x ≤ 1) was successfully prepared, exhibiting cubic perovskite structures extending between the metastable CsSnCl3 and stable CsSnBr3 end-members. The NMR spectra of CsSnBr3 samples obtained by three routes (high-temperature, mechanochemical, and solvent-assisted reactions) show distinct chemical shift ranges, spin-lattice relaxation parameters and peak widths, indicative of differences in local structure, defects and degree of crystallinity within these samples. Variable-temperature 119Sn spin-lattice relaxation measurements reveal spontaneous mobility of Br atoms in CsSnBr3. The degradation of CsSnBr3, exposed to an ambient atmosphere for nearly a year, was monitored by NMR spectroscopy and powder X-ray diffraction, as well as by optical absorption spectroscopy.

4.
Biometals ; 30(4): 459-503, 2017 08.
Article in English | MEDLINE | ID: mdl-28512703

ABSTRACT

Bacterial infections cause severe medical problems worldwide, resulting in considerable death and loss of capital. With the ever-increasing rise of antibiotic-resistant bacteria and the lack of development of new antibiotics, research on metal-based antimicrobial therapy has now gained pace. Metal ions are essential for survival, but can be highly toxic to organisms if their concentrations are not strictly controlled. Through evolution, bacteria have acquired complex metal-management systems that allow them to acquire metals that they need for survival in different challenging environments while evading metal toxicity. Metalloproteins that controls these elaborate systems in the cell, and linked to key virulence factors, are promising targets for the anti-bacterial drug development. Among several metal-sensory transcriptional regulators, the ArsR-SmtB family displays greatest diversity with several distinct metal-binding and nonmetal-binding motifs that have been characterized. These prokaryotic metolloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of metal ions by directly binding to the regulatory regions of DNA, while derepression results from direct binding of metal ions by these homodimeric proteins. Many bacteria, e.g., Mycobacterium tuberculosis, Bacillus anthracis, etc., have evolved to acquire multiple metal-sensory motifs which clearly demonstrate the importance of regulating concentrations of multiple metal ions. Here, we discussed the mechanisms of how ArsR-SmtB family regulates the intracellular bioavailability of metal ions both inside and outside of the host. Knowledge of the metal-challenges faced by bacterial pathogens and their survival strategies will enable us to develop the next generation drugs.


Subject(s)
Bacteria/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Homeostasis/genetics , Metallothionein/genetics , Metals/metabolism , Trans-Activators/genetics , Bacillus anthracis/genetics , Bacillus anthracis/metabolism , Bacteria/classification , Bacteria/metabolism , Binding Sites , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Metallothionein/metabolism , Multigene Family , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Phylogeny , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...