Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(54): 6877-6880, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38873969

ABSTRACT

Herein, we report the synthesis and catalytic application of a new N,N'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized via the treatment of chlorobismuthane LBiCl [L = 1,2-C6H4{N(CH2tBu)}2] (2) with AgSbF6, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.

2.
Chemistry ; 30(26): e202303411, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38441342

ABSTRACT

An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range. These organic compounds exhibited four different stable redox states (dication, radical cation, neutral and radical anion), and all of them were characterized either by single crystal X-ray study and/or various spectroscopic studies. Three of the four redox states are stable to air and moisture. The availability of stable multiple redox states demonstrated promise towards their efficacy in the symmetric H-cell charge/discharge cycling. Among various redox states, the dication/neutral state works efficiently and continuously for 1500 cycles in 2e- charge/discharge process outside glovebox in commercially available DMF with minimum capacity loss (retaining nearly 90 % Coulombic efficiency). Surprisingly, the efficiency of the redox cycle was retained even if the system was exposed to air for 30 days when it slowly regenerated to the initial deep blue radical cation, and it exhibited another 100 charge/discharge cycles with a minimal capacity loss. Such a stable H-cell cycling ability is not well known among organic molecule-based systems.

3.
Org Lett ; 25(11): 1799-1804, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36662600

ABSTRACT

Herein we report the development of a new methodology for the synthesis of various quinodimethane derivatives under two-electron oxidation of bis-N-heterocyclic olefins linked by different π-conjugated aromatic spacers. In case of para- and ortho-phenylene bridge, we obtained air and moisture stable diimidazolium para- and ortho-quinodimethane derivatives. Analogues of the para-phenylene spacer such as tetrafluoro-p-phenylene and p-anthracene also led to the corresponding air and moisture stable quinodimethane derivatives. This emphasizes the influence of imidazolium substituents which facilitate the air and moisture stability of the quinodimethane derivatives. Differences were observed for the electron transfer processes: two one-electron vs one two-electron redox transitions between bis-N-heterocyclic olefins and diimidazolium-quinodimethanes depending on the employed π-conjugated aromatic spacer. The formation of the π-conjugated radical-cations, transient redox intermediates between bis-N-heterocyclic olefins and diimidazolium-quinodimethanes, was addressed by an EPR investigation.

4.
Chem Sci ; 13(42): 12533-12539, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36382295

ABSTRACT

The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1 (ΔE ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.

5.
Angew Chem Int Ed Engl ; 61(51): e202213614, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36259383

ABSTRACT

An extended class of stable mesoionic N-heterocyclic imines (mNHIs), containing a highly polarized exocyclic imine moiety, were synthesized. The calculated proton affinities (PA) and experimentally determined Tolman electronic parameters (TEPs) reveal that these synthesized mNHIs have the highest basicity and donor ability among NHIs reported so far. The superior nucleophilicity of newly designed mNHIs was utilized in devising a strategy to incorporate CO2 as a bridging unit under reductive conditions to couple inert primary amides. This strategy was further extended to hetero-couplings between amide and amine using CO2 . These hitherto unknown catalytic transformations were introduced in the diversification of various biologically active drug molecules under metal-free conditions. The underlying mechanism was explored by performing a series of control experiments, characterizing key intermediates using spectroscopic and crystallographic techniques.


Subject(s)
Amides , Imines , Imines/chemistry , Amides/chemistry , Carbon Dioxide/chemistry , Catalysis , Amines/chemistry
6.
Inorg Chem ; 61(36): 14282-14287, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36047676

ABSTRACT

Herein, we report the synthesis of a benzimidazolylidene-stabilized borane adduct and its borenium ion. This borenium ion was used as a metal-free catalyst for hydrogenating various substituted quinoline N-heterocycles under ambient conditions. Furthermore, this method was utilized to synthesize two drug molecules: galipinine and angustureine. A detailed DFT study was performed to understand this metal-free catalytic hydrogenation.


Subject(s)
Boranes , Catalysis , Hydrogenation
7.
Chem Commun (Camb) ; 58(74): 10380-10383, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36039684

ABSTRACT

The synthesis of novel stibenium cations and their catalytic application in cyanosilylation of carbonyl compounds have been described. Treatment of chlorostibine L1SbCl [L1 = 1,2-C6H4{N(CH2tBu)}2] (2) with 1 equiv. of AgOTf and AgSbF6 resulted in the formation of donor free L1SbOTf (3) and [L1Sb]+[SbF6]- (4), respectively. Among these three compounds, 4 exhibits excellent catalytic activity towards the cyanosilylation of aldehydes and ketones.

8.
Chem Commun (Camb) ; 58(68): 9540-9543, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35929415

ABSTRACT

Herein we report the first metal-free regioselective Markovnikov ring-opening of epoxides (selectivity up to 99%) using an abnormal N-heterocyclic carbene (aNHC) to yield secondary alcohols. DFT calculations and X-ray crystallography suggest that the Markovnikov selectivity originates from the high nucleophilicity and steric factors associated with the aNHC.

9.
Chem Asian J ; 17(10): e202200148, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35320614

ABSTRACT

Frustrated Lewis pairs (FLP) which rely on the cooperative action of Lewis acids and Lewis bases, played a prominent role in the advancement of main-group catalysis. While the early days of FLP chemistry witnessed the dominance of boranes, there is a growing body of reports on alternative Lewis acids derived from groups 14 and 15. This short review focuses on the discovery of such non-boron candidates reported since 2015.


Subject(s)
Boranes , Lewis Acids , Catalysis
10.
Chem Commun (Camb) ; 58(19): 3122-3125, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35113113

ABSTRACT

The activation of atmospheric molecular dioxygen (O2) is reported, which occurred across a C(sp3)-C(sp3) bond of a piperazine derivative without any catalyst at ambient conditions under the formation of 1,2,4,7-dioxadiazoctane, an 8-membered (larger-ring) cyclic organic peroxide.

11.
Nat Commun ; 12(1): 7313, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34916503

ABSTRACT

The much-needed renewable alternatives to fossil fuel can be achieved efficiently and sustainably by converting solar energy to fuels via hydrogen generation from water or CO2 reduction. Herein, a soft processable metal-organic hybrid material is developed and studied for photocatalytic activity towards H2 production and CO2 reduction to CO and CH4 under visible light as well as direct sunlight irradiation. A tetrapodal low molecular weight gelator (LMWG) is synthesized by integrating tetrathiafulvalene (TTF) and terpyridine (TPY) derivatives through amide linkages and results in TPY-TTF LMWG. The TPY-TTF LMWG acts as a linker, and self-assembly of this gelator molecules with ZnII ions results in a coordination polymer gel (CPG); Zn-TPY-TTF. The Zn-TPY-TTF CPG shows high photocatalytic activity towards H2 production (530 µmol g-1h-1) and CO2 reduction to CO (438 µmol g-1h-1, selectivity > 99%) regulated by charge-transfer interactions. Furthermore, in situ stabilization of Pt nanoparticles on CPG (Pt@Zn-TPY-TTF) enhances H2 evolution (14727 µmol g-1h-1). Importantly, Pt@Zn-TPY-TTF CPG produces CH4 (292 µmol g-1h-1, selectivity > 97%) as CO2 reduction product instead of CO. The real-time CO2 reduction reaction is monitored by in situ DRIFT study, and the plausible mechanism is derived computationally.

12.
Inorg Chem ; 60(20): 15180-15189, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34590831

ABSTRACT

Tetrel Lewis acids are a prospective alternative to commonly employed neutral boranes in frustrated Lewis pair (FLP) chemistry. While cationic tetrylium Lewis acids, being isolobal and iso(valence)electronic, are a natural replacement to boranes, neutral tetrel Lewis acids allude as less trivial options due to the absence of a formally empty p orbital on the acceptor atom. Recently, a series of intramolecular geminal FLPs (C2F5)3E-CH2-P(tBu)2 (E = Si, Ge, Sn) featuring neutral tetrel atoms as acceptor sites has been reported for activation of small molecules including H2. In this work, through density functional theory computations, we elucidate the general mechanistic picture of H2 activation by this family of FLPs. Our findings reveal that the acceptor atom derives the required Lewis acidity utilizing the antibonding orbitals of its adjacent bonds with the individual contributions depending on the identity of the acceptor and the donor atoms. By varying the identity of the Lewis acid and Lewis base sites and attached substituents, we unravel their interplay on the energetics of the H2 activation. We find that switching the donor site from P to N significantly affects the synchronous nature of the bond breaking/formations along the reaction pathway, and as a result, N-bearing FLPs have a more favorable H2 activation profile than those with P. Our results are quantitatively discussed in detail within the framework of the activation-strain model of reactivity along with the energy-decomposition analysis method. Finally, the reductive elimination decomposition route pertinent to the plausible extension of the H2 activation to catalytic hydrogenation by these FLPs is also examined.

13.
Chem Commun (Camb) ; 57(43): 5282-5285, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33942839

ABSTRACT

A storable bicyclic (alkyl)(amino)carbene (BICAAC) stabilized two coordinate zinc(0) complex [(BICAAC)2Zn] (2) was synthesized. DFT calculations reveal that BICAAC plays a decisive role in imparting the stability to 2. This complex activates the C(sp3)-Cl bond of trityl chloride generating the Gomberg's free radical with greater efficiency than metallic Zn powder.

14.
Chem Commun (Camb) ; 56(59): 8233-8236, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32558832

ABSTRACT

The coulombic repulsion between two adjacent cation centres of 1,2-carbodications is known to decrease with π- and/or n-donor substituents by a positive charge delocalization. Here we report the delocalization of the positive charge of transient 1,2-carbodications having one H-substituent by an intramolecular base-coordination. N-heterocyclic olefin (NHO) derived 2-pyrrolidinyl appended trisubstituted geminal diazaalkenes were used for the generation of transient 1,2-carbodications through a 2-e chemical oxidation process. We have also studied the 1-e oxidation reaction of trisubstituted geminal diazaalkenes (electrochemically and chemically) and also studied them using in situ EPR spectroscopy.

15.
J Mol Model ; 24(9): 264, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30171368

ABSTRACT

Being monocyclic planar, benzene retains 6π Hückel aromatic backbone. However, for larger analogues, the repulsion between vicinal C-H bonds makes them nonplanar, as for [10]-annulene. Thus, on this basis, a planar 10-π-aromatic C10H10 is unreachable. A detailed structural comparison among the C3H3+, C4H42+, C5H5-, C6H6, C7H7+, C8H82+, C9H9-, and C10H10 systems supports that the repulsion between vicinal C-H bonds is the primary reason for the loss of planarity, despite the favorable aromatic electron count. In this respect, here we have discussed ten-membered monocyclic planar 10-π-aromatic, (CH)5(XH)5 {X = Si, Ge, Sn} systems, modeled by using DFT. From NBO analysis and the overall magnetic behavior it is shown that (CH)5(GeH)5, (CH)5(SnH)5 molecules are promising planar 10-π-aromatic system. Thus, such species represent plausible Hückel aromatic rings retaining a ten-membered backbone as discussed here, which may lead to the characterization of novel species expanding the chemistry of larger aromatic rings. We believe that the present study may open new avenues in the formation of 10-π-aromatic species. Graphical abstract Molecular modeling in quest of a planar 10-membered 10-π-electron aromatic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...