Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
3.
Front Cell Neurosci ; 16: 837576, 2022.
Article in English | MEDLINE | ID: mdl-35444517

ABSTRACT

Emerging evidence suggests that DNA repair deficiency and genome instability may be the impending signs of many neurological diseases. Genome-wide association (GWAS) studies have established a strong correlation between genes that play a role in DNA damage repair and many neurodegenerative diseases, including Huntington's disease (HD), and several other trinucleotides repeat expansion-related hereditary ataxias. Recently, many reports have documented a significant role played by the DNA repair processes in aging and in modifying many neurodegenerative diseases, early during their progression. Studies from our lab and others have now begun to understand the mechanisms that cause defective DNA repair in HD and surprisingly, many proteins that have a strong link to known neurodegenerative diseases seem to be important players in these cellular pathways. Mutations in huntingtin (HTT) gene that lead to polyglutamine repeat expansion at the N-terminal of HTT protein has been shown to disrupt transcription-coupled DNA repair process, a specialized DNA repair process associated with transcription. Due to the recent progress made in understanding the mechanisms of DNA repair in relation to HD, in this review, we will mainly focus on the mechanisms by which the wild-type huntingtin (HTT) protein helps in DNA repair during transcription, and the how polyglutamine expansions in HTT impedes this process in HD. Further studies that identify new players in DNA repair will help in our understanding of this process in neurons. Furthermore, it should help us understand how various DNA repair mechanism(s) coordinate to maintain the normal physiology of neurons, and provide insights for the development of novel drugs at prodromal stages of these neurodegenerative diseases.

4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468657

ABSTRACT

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Subject(s)
DNA Repair Enzymes/genetics , DNA Repair , DNA/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Inhibitors of Activated STAT/genetics , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/genetics , Animals , Cell Differentiation , DNA/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , Disease Models, Animal , Female , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Primary Cell Culture , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Protein Inhibitors of Activated STAT/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Transcription, Genetic
5.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32205441

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Subject(s)
Ataxin-3/genetics , DNA End-Joining Repair , DNA Repair Enzymes/metabolism , Machado-Joseph Disease/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Polymerase II/metabolism , Repressor Proteins/genetics , Aged, 80 and over , Animals , Animals, Genetically Modified , Ataxin-3/metabolism , Brain/pathology , Cell Line , DNA Breaks, Double-Stranded , Disease Models, Animal , Drosophila , Female , Gene Knockdown Techniques , Humans , Induced Pluripotent Stem Cells , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Male , Mice , Middle Aged , Mutation , Peptides/genetics , RNA, Small Interfering/metabolism
6.
Elife ; 82019 04 17.
Article in English | MEDLINE | ID: mdl-30994454

ABSTRACT

How huntingtin (HTT) triggers neurotoxicity in Huntington's disease (HD) remains unclear. We report that HTT forms a transcription-coupled DNA repair (TCR) complex with RNA polymerase II subunit A (POLR2A), ataxin-3, the DNA repair enzyme polynucleotide-kinase-3'-phosphatase (PNKP), and cyclic AMP-response element-binding (CREB) protein (CBP). This complex senses and facilitates DNA damage repair during transcriptional elongation, but its functional integrity is impaired by mutant HTT. Abrogated PNKP activity results in persistent DNA break accumulation, preferentially in actively transcribed genes, and aberrant activation of DNA damage-response ataxia telangiectasia-mutated (ATM) signaling in HD transgenic mouse and cell models. A concomitant decrease in Ataxin-3 activity facilitates CBP ubiquitination and degradation, adversely impacting transcription and DNA repair. Increasing PNKP activity in mutant cells improves genome integrity and cell survival. These findings suggest a potential molecular mechanism of how mutant HTT activates DNA damage-response pro-degenerative pathways and impairs transcription, triggering neurotoxicity and functional decline in HD.


Subject(s)
Ataxin-3/metabolism , DNA Repair Enzymes/metabolism , DNA Repair , Huntingtin Protein/metabolism , Mutant Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Repressor Proteins/metabolism , Transcription, Genetic , Animals , Cell Line , DNA-Directed RNA Polymerases/metabolism , Humans , Huntingtin Protein/genetics , Mice, Transgenic , Mutant Proteins/genetics , Peptide Fragments/metabolism , Protein Binding , Protein Multimerization , Sialoglycoproteins/metabolism
7.
Rev Sci Instrum ; 88(2): 023702, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28249518

ABSTRACT

Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

8.
Physiol Rep ; 4(21)2016 11.
Article in English | MEDLINE | ID: mdl-27905294

ABSTRACT

Glucocorticoids (GC) are a frontline therapy for numerous acute and chronic diseases because of their demonstrated efficacy at reducing systemic inflammation. An unintended side effect of GC therapy is the stimulation of skeletal muscle atrophy. Pathophysiological mechanisms responsible for GC-induced skeletal muscle atrophy have been extensively investigated, and the ability to treat patients with GC without unintended muscle atrophy has yet to be realized. We have reported that a single, standard-of-care dose of Methylprednisolone increases in vivo expression of NF-κB-inducing kinase (NIK), an important upstream regulatory kinase controlling NF-κB activation, along with other key muscle catabolic regulators such as Atrogin-1 and MuRF1 that induce skeletal muscle proteolysis. Here, we provide experimental evidence that overexpressing NIK by intramuscular injection of recombinant human NIK via adenoviral vector in mouse tibialis anterior muscle induces a 30% decrease in the average fiber cross-sectional area that is associated with increases in mRNA expression of skeletal muscle atrophy biomarkers MuRF1, Atrogin-1, myostatin and Gadd45. A single injection of GC induced NIK mRNA and protein within 2 h, with the increased NIK localized to nuclear and sarcolemmal locations within muscle fibers. Daily GC injections induced skeletal muscle fore limb weakness as early as 3 days with similar atrophy of muscle fibers as observed with NIK overexpression. NIK overexpression in primary human skeletal muscle myotubes increased skeletal muscle atrophy biomarkers, while NIK knockdown significantly attenuated GC-induced increases in NIK and Atrogin-1. These results suggest that NIK may be a novel, previously unrecognized mediator of GC-induced skeletal muscle atrophy.


Subject(s)
Glucocorticoids/pharmacology , Muscle, Skeletal/enzymology , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Glucocorticoids/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology , Protein Serine-Threonine Kinases/administration & dosage , RNA, Messenger/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , NF-kappaB-Inducing Kinase
9.
Nat Commun ; 7: 13049, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703167

ABSTRACT

DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , RNA/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , HEK293 Cells , Humans , Lac Operon , Plasmids , RNA Polymerase II/metabolism , RNA, Small Interfering/metabolism , Reproducibility of Results , Ribonuclease H/metabolism , Transcription, Genetic
10.
Nat Commun ; 7: 11647, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27248057

ABSTRACT

RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.


Subject(s)
Ataxin-10/antagonists & inhibitors , Microsatellite Repeats , Neuroprotective Agents/chemical synthesis , RNA Splicing/drug effects , RNA, Messenger/antagonists & inhibitors , Small Molecule Libraries/chemical synthesis , Ataxin-10/genetics , Ataxin-10/metabolism , Base Pairing , Caspase 3/genetics , Caspase 3/metabolism , DNA Repeat Expansion/genetics , Drug Design , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , HeLa Cells , Humans , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Primary Cell Culture , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Small Molecule Libraries/pharmacology , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology , Structure-Activity Relationship
11.
J Biol Chem ; 290(41): 24636-48, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26245904

ABSTRACT

Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans.


Subject(s)
DNA Glycosylases/deficiency , DNA Glycosylases/genetics , DNA/metabolism , Genome/genetics , Transcription, Genetic , Aging/genetics , Aging/metabolism , Animals , Cell Line , DNA/genetics , DNA Damage , Gene Knockout Techniques , Genomic Instability , Homeostasis , Humans , Inflammation/genetics , Inflammation/metabolism , Mice , Oxidation-Reduction , RNA Polymerase II/metabolism , Telomere/genetics
12.
PLoS Genet ; 11(1): e1004834, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25590633

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.


Subject(s)
DNA Damage/genetics , DNA Repair Enzymes/genetics , Machado-Joseph Disease/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Repressor Proteins/genetics , Apoptosis , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxin-3 , DNA Repair/genetics , DNA Repair Enzymes/biosynthesis , Humans , Machado-Joseph Disease/pathology , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Protein Aggregates/genetics , Protein Kinase C-delta/genetics , Repressor Proteins/metabolism , Signal Transduction/genetics , Trinucleotide Repeat Expansion/genetics
13.
PLoS Genet ; 11(1): e1004749, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25633985

ABSTRACT

DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.


Subject(s)
DNA Repair Enzymes/genetics , Machado-Joseph Disease/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Repressor Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Ataxin-3 , Cell Line , DNA Damage/genetics , DNA Repair/genetics , DNA Repair Enzymes/metabolism , Humans , Machado-Joseph Disease/enzymology , Machado-Joseph Disease/physiopathology , Mammals , Mice , Mice, Transgenic , Mutation , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Oxidative Stress/genetics , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Repressor Proteins/metabolism
14.
PLoS One ; 9(8): e104247, 2014.
Article in English | MEDLINE | ID: mdl-25099937

ABSTRACT

Alcohol intoxication results in neuronal apoptosis, neurodegeneration and manifest with impaired balance, loss of muscle coordination and behavioral changes. One of the early events of alcohol intoxication is mitochondrial (Mt) dysfunction and disruption of intracellular redox homeostasis. The mechanisms by which alcohol causes Mt dysfunction, disrupts cellular redox homeostasis and triggers neurodegeneration remains to be further investigated. Proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) plays critical roles in regulating Mt biogenesis and respiration, cellular antioxidant defense mechanism, and maintenance of neuronal integrity and function. In this study, we sought to investigate whether alcohol causes Mt dysfunction and triggers neurodegeneration by suppressing PGC-1α expression. We report that ethanol suppresses PGC-1α expression, and impairs mitochondrial function and enhances cellular toxicity in cultured neuronal cell line and also in human fetal brain neural stem cell-derived primary neurons. Moreover, we report that cells over-expressing exogenous PGC-1α or treated with Rolipram, a selective phosphodiesterase-4 inhibitor, ameliorate alcohol-induced cellular toxicity. Further analysis show that ethanol decreases steady-state intracellular cAMP levels, and thus depletes phosphorylation of cAMP-response element binding protein (p-CREB), the key transcription factor that regulates transcription of PGC-1α gene. Accordingly, we found PGC-1α promoter activity and transcription was dramatically repressed in neuronal cells when exposed to ethanol, suggesting that ethanol blunts cAMP→CREB signaling pathway to interfere with the transcription of PGC-1α. Ethanol-mediated decrease in PGC-1α activity results in the disruption of Mt respiration and function and higher cellular toxicity. This study might lead to potential therapeutic intervention to ameliorate alcohol-induced apoptosis and/or neurodegeneration by targeting PGC-1α.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , Ethanol/pharmacology , Gene Expression Regulation/drug effects , Neurons/metabolism , Second Messenger Systems/drug effects , Transcription Factors/biosynthesis , Cell Line, Tumor , Cyclic AMP/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Humans , Neurons/cytology , Oxygen Consumption/drug effects , Oxygen Consumption/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Response Elements , Rolipram/pharmacology , Second Messenger Systems/genetics , Transcription Factors/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
16.
Cell Physiol Biochem ; 31(4-5): 659-72, 2013.
Article in English | MEDLINE | ID: mdl-23711492

ABSTRACT

BACKGROUND: Both endoplasmic reticulum (ER) stress, a fundamental cell response associated with stress-initiated unfolded protein response (UPR), and loss of Klotho, an anti-aging hormone linked to NF-κB-induced inflammation, occur in chronic metabolic diseases such as obesity and type 2 diabetes. We investigated if the loss of Klotho is causally linked to increased ER stress. METHODS: We treated human renal epithelial HK-2, alveolar epithelial A549, HEK293, and SH-SH-SY5Y neuroblastoma cells with ER stress-inducing agents, thapsigargin and/or tunicamycin. Effects of overexpression or siRNA-mediated knockdown of Klotho on UPR signaling was investigated by immunoblotting and Real-time PCR. RESULTS: Elevated Klotho levels in HK-2 cells decreased expression of ER stress markers phospho--IRE1, XBP-1s, BiP, CHOP, pJNK, and phospho-p38, all of which were elevated in response to tunicamycin and/or thapsigargin. Similar results were observed using A549 cells for XBP-1s, BiP, and CHOP in response to thapsigargin. Conversely, knockdown of Klotho in HEK 293 cells using siRNA caused further thapsigargin-induced increases in pIRE-1, XBP-1s, and BiP. Klotho overexpression in A549 cells blocked thapsigargin-induced caspase and PARP cleavage and improved cell viability. CONCLUSION: Our data indicate that Klotho has an important role in regulating ER stress and that loss of Klotho is causally linked to ER stress-induced apoptosis.


Subject(s)
Glucuronidase/metabolism , Apoptosis , Caspases/metabolism , Cell Line , Cell Survival/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Glucuronidase/antagonists & inhibitors , Glucuronidase/genetics , HEK293 Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Klotho Proteins , Phosphorylation , Poly(ADP-ribose) Polymerases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Thapsigargin/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Tunicamycin/pharmacology , Unfolded Protein Response , Up-Regulation/drug effects
17.
Eur J Hum Genet ; 21(11): 1272-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23443018

ABSTRACT

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder caused by a noncoding ATTCT pentanucleotide expansion. An inverse correlation between SCA10 expansion size and age at onset has been reported, and genetic anticipation has been documented. Interruptions in the ATTCT expansion are known to occur within the expansion. In order to determine the effect of repeat interruptions in SCA10 expansions, we designed a PCR assay to easily identify ATCCT repeat interruptions in the 5'-end of the expansion. We screened a cohort of 31 SCA10 families of Mexican, Brazilian and Argentinean ancestry to identify those with ATCCT repeat interruptions within their SCA10 expansions. We then studied the effects of ATCCT interruptions on intergenerational repeat instability, anticipation and age at onset. We find that the SCA10 expansion size is larger in SCA10 patients with an interrupted allele, but there is no difference in the age at onset compared with those expansions without detectable interruptions. An inverse correlation between the expansion size and the age at onset was found only with SCA10 alleles without interruptions. Interrupted expansion alleles show anticipation but are accompanied by a paradoxical contraction in intergenerational repeat size. In conclusion, we find that SCA10 expansions with ATCCT interruptions dramatically differ from SCA10 expansions without detectable ATCCT interruptions in repeat-size-instability dynamics and pathogenicity.


Subject(s)
DNA Repeat Expansion/genetics , Genomic Instability/genetics , Spinocerebellar Ataxias/genetics , Age of Onset , Anticipation, Genetic , Humans
18.
DNA Repair (Amst) ; 11(6): 570-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22497777

ABSTRACT

Human NEIL2, one of five oxidized base-specific DNA glycosylases, is unique in preferentially repairing oxidative damage in transcribed genes. Here we show that depletion of NEIL2 causes a 6-7-fold increase in spontaneous mutation frequency in the HPRT gene of the V79 Chinese hamster lung cell line. This prompted us to screen for NEIL2 variants in lung cancer patients' genomic DNA. We identified several polymorphic variants, among which R103Q and R257L were frequently observed in lung cancer patients. We then characterized these variants biochemically, and observed a modest decrease in DNA glycosylase activity relative to the wild type (WT) only with the R257L mutant protein. However, in reconstituted repair assays containing WT NEIL2 or its R257L and R103Q variants together with other DNA base excision repair (BER) proteins (PNKP, Polß, Lig IIIα and XRCC1) or using NEIL2-FLAG immunocomplexes, an ~5-fold decrease in repair was observed with the R257L variant compared to WT or R103Q NEIL2, apparently due to the R257L mutant's lower affinity for other repair proteins, particularly Polß. Notably, increased endogenous DNA damage was observed in NEIL2 variant (R257L)-expressing cells relative to WT cells. Taken together, our results suggest that the decreased DNA repair capacity of the R257L variant can induce mutations that lead to lung cancer development.


Subject(s)
DNA Glycosylases/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Aged , Animals , Blotting, Western , CHO Cells , Cell Line , Cricetinae , Cricetulus , DNA Damage , DNA Glycosylases/metabolism , DNA Repair/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Frequency , Genotype , HEK293 Cells , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Lung Neoplasms/enzymology , Male , Middle Aged , Mutation Rate , Oligonucleotides, Antisense/genetics , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors
19.
J Neurosci Res ; 90(3): 706-14, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22065565

ABSTRACT

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder manifested by ataxia and seizure. SCA10 is caused by a large expansion of an intronic ATTCT pentanucleotide repeat in the ATXN10 gene. We have recently postulated a toxic RNA-mediated gain of function in the pathogenesis of spinal cerebellar ataxia type 10 (SCA10). The spliced intron-9 RNA containing the expanded AUUCU repeat aggregates in SCA10 cells and sequesters hnRNP K. hnRNP K sequestration triggers the translocation of protein kinase Cδ (PKCδ) to mitochondria, leading to activation of caspase-3 and apoptosis. To confirm the toxic RNA-mediated gain of function, we generated a new transgenic mouse model in which the expanded pentanucleotide repeats are constructed in the 3'-untranslated region (3'UTR) to ensure transcription without translation of the repeat. We constructed an artificial transgene containing the SCA10 (ATTCT)(500) track within the 3'UTR of the LacZ gene driven by the rat prion promoter (PrP) and used this to generate a new transgenic mouse model for SCA10. We then examined these mice for neurological phenotypes and histopathological, molecular, and cellular changes. The transgenic mice showed irregular gait and increased seizure susceptibility at the age of 6 months, resembling the clinical phenotype of SCA10. The cerebral cortex, hippocampus, and pontine nuclei showed neuronal loss. The brains of these animals also showed molecular and cellular changes similar to those previously found in an SCA10 cell model. Expression of the expanded SCA10 AUUCU repeat within the 3'UTR of a gene results in neuronal loss with associated gait abnormalities and increased seizure susceptibility phenotypes, which resemble those seen in SCA10 patients. Moreover, these results bolster the idea that the SCA10 disease mechanism is mediated by a toxic RNA gain-of-function mutation of the expanded AUUCU repeat.


Subject(s)
Carrier Proteins/genetics , Gait/genetics , Microsatellite Repeats , Motor Activity/genetics , Seizures/genetics , Animals , Ataxin-10 , Carrier Proteins/metabolism , Mice , Mice, Transgenic , Phenotype , RNA/genetics , RNA/metabolism , Seizures/metabolism
20.
J Biol Chem ; 287(4): 2819-29, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22130663

ABSTRACT

The repair of reactive oxygen species-induced base lesions and single strand breaks (SSBs) in the nuclear genome via the base excision (BER) and SSB repair (SSBR) pathways, respectively, is well characterize, and important for maintaining genomic integrity. However, the role of mitochondrial (mt) BER and SSBR proteins in mt genome maintenance is not completely clear. Here we show the presence of the oxidized base-specific DNA glycosylase Nei-like 2 (NEIL2) and the DNA end-processing enzyme polynucleotide kinase 3'-phosphatase (PNKP) in purified human mitochondrial extracts (MEs). Confocal microscopy revealed co-localization of PNKP and NEIL2 with the mitochondrion-specific protein cytochrome c oxidase subunit 2 (MT-CO2). Further, chromatin immunoprecipitation analysis showed association of NEIL2 and PNKP with the mitochondrial genes MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 3); importantly, both enzymes also associated with the mitochondrion-specific DNA polymerase γ. In cell association of NEIL2 and PNKP with polymerase γ was further confirmed by proximity ligation assays. PNKP-depleted ME showed a significant decrease in both BER and SSBR activities, and PNKP was found to be the major 3'-phosphatase in human ME. Furthermore, individual depletion of NEIL2 and PNKP in human HEK293 cells caused increased levels of oxidized bases and SSBs in the mt genome, respectively. Taken together, these studies demonstrate the critical role of NEIL2 and PNKP in maintenance of the mammalian mitochondrial genome.


Subject(s)
DNA Breaks, Single-Stranded , DNA Glycosylases/metabolism , DNA Repair Enzymes/metabolism , DNA Repair/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Genome, Mitochondrial/physiology , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Cytochromes c/genetics , Cytochromes c/metabolism , DNA Glycosylases/genetics , DNA Polymerase gamma , DNA Repair Enzymes/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , HEK293 Cells , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...