Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2289: 221-233, 2021.
Article in English | MEDLINE | ID: mdl-34270073

ABSTRACT

The obstacles to breeding programs in Jatropha are the long reproductive cycle with a juvenile phase that lasts several months, the highly heterozygous nature of the genome, the large canopy size, and self-incompatibility that is a long-term process which requires multiple cycles of self-pollination to achieve complete homozygosity. In vitro plant tissue culture-based tools such as haploids and doubled haploid techniques can increase the selection efficiency, resulting into selection of superior plants with complete homozygosity in one generation. It bypasses the complications of greenhouse field evaluation or off-season generation advancement, which takes about 8-10 generations in traditional breeding with the time line of 10-12 years. The haploids have in fact a single set of chromosomes, which undergoes duplication spontaneously during in vitro culture conditions, and are further converted into doubled haploid plants. This represents a major biotechnological tool to accelerate plant breeding. Here, we have established a reproducible, unique anther culture protocol in Jatropha curcas to develop haploid and doubled haploid plants.


Subject(s)
Cell Culture Techniques/methods , Flowers/genetics , Jatropha/genetics , Plant Breeding/methods , Trees/genetics , Chromosomes, Plant/genetics , Haploidy , Homozygote , Pollination/genetics
2.
Carbohydr Polym ; 266: 118176, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34044916

ABSTRACT

Bacterial nanocellulose production is gaining popularity owing to its applications in food, cosmetics and medical industry. Three Acetobacter strains isolated from organic waste and fermented tea were identified using 16S rDNA sequencing and their ability to produce nanocellulose was studied. Strain isolated from Kombucha has 99% homology with Komagataeibacter rhaeticus DSM 16663 T. This is the first report where nanocellulose productivity of this strain with different carbon sources such as glucose, glycerol, fructose and sucrose has been studied. 1% glycerol was found to be optimal concentration, with up to 69% of the utilized carbon converted to nanocellulose. Maximum productivity of 4.5 g/L of bacterial nanocellulose was obtained. Average nitrogen and phosphorus consumption rate was 45 mg/L/day each. Physical properties such as crystallinity, fibril dimensions, and glass transition temperature were studied. Bacterial cellulose was 80% crystalline when glycerol and glucose were used as carbon source and 73% for fructose and sucrose. Renewable materials such as bacterial cellulose with their unique properties are the future for applications in the field of cosmetics, composite and wound care.


Subject(s)
Cellulose/biosynthesis , Fruit/microbiology , Kombucha Tea/microbiology , Nanostructures/chemistry , Acetobacteraceae/metabolism , Cell Separation , Cellulose/chemistry , Glucose/metabolism , Glycerol/metabolism , Solid Waste
3.
PLoS One ; 9(9): e106928, 2014.
Article in English | MEDLINE | ID: mdl-25207917

ABSTRACT

Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the primary cell walls of a mutant (cob-6) and wild type Arabidopsis hypocotyl parenchyma cells by RT-tomography of HPF-FS-resin sections, and detected a small but significant difference in spatial organization of cellulose microfibrils in the mutant walls.


Subject(s)
Arabidopsis/cytology , Cell Wall/metabolism , Cell Wall/ultrastructure , Cryopreservation , Electron Microscope Tomography/methods , Imaging, Three-Dimensional/methods , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/genetics , Cells, Immobilized/ultrastructure , Cellulose/metabolism , Cryoultramicrotomy , Freeze Substitution , Mutation , Temperature , Tissue Embedding
4.
J Vis Exp ; (90): e51673, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25145678

ABSTRACT

Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Electron/methods , Algorithms , Arabidopsis/cytology , Cell Wall/ultrastructure , Epithelial Cells/cytology , Humans , Mammary Glands, Human/cytology
5.
Physiol Plant ; 146(4): 413-26, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22486732

ABSTRACT

Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity-forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20-30 kb were detected by pulse-field gel electrophoresis, but no low-molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria-dependent PCD pathways, was detected in the cavity-forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia-induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.


Subject(s)
Cytochromes c/metabolism , Pisum sativum/cytology , Plant Roots/cytology , Plant Vascular Bundle/cytology , Stress, Physiological , Blotting, Western , Cell Death , Cell Hypoxia , Cell Wall/chemistry , Cytosol/chemistry , DNA Fragmentation , DNA, Plant/genetics , Electrophoresis, Gel, Pulsed-Field , Floods , Microscopy, Fluorescence , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Weight , Pisum sativum/metabolism , Pisum sativum/physiology , Plant Cells/metabolism , Plant Cells/physiology , Plant Diseases , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Plant Vascular Bundle/metabolism , Plant Vascular Bundle/physiology , Time Factors
6.
ACM BCB ; 2012: 170-177, 2012 Oct.
Article in English | MEDLINE | ID: mdl-28090597

ABSTRACT

Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides.

7.
J Exp Bot ; 60(13): 3615-35, 2009.
Article in English | MEDLINE | ID: mdl-19687127

ABSTRACT

Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.


Subject(s)
Biological Evolution , Cell Wall/chemistry , Plants/chemistry , Cell Wall/genetics , Cell Wall/metabolism , Cellulose/metabolism , Models, Biological , Plants/genetics , Plants/metabolism
8.
Am J Bot ; 95(7): 782-92, 2008 Jul.
Article in English | MEDLINE | ID: mdl-21632404

ABSTRACT

Cellular degeneration is essential for many developmental and stress acclimation processes. Undifferentiated parenchymatous cells in the central vascular cylinder of pea primary roots degenerate under hypoxic conditions created by flooding at temperatures >15°C, forming a long vascular cavity that seems to provide a conduit for longitudinal oxygen transport in the roots. We show that specific changes in the cell wall ultrastructure accompanied previously detected cytoplasmic and organellar degradation in the cavity-forming roots. The degenerating cells had thinner primary cell walls, less electron-dense middle lamellae, and less abundant cell wall homogalacturonans in altered patterns, compared to healthy cells of roots grown under cold, nonflooded conditions. Cellular breakdown and changes in wall ultrastructure, however, remained confined to cells within a 50-µm radius around the root center, even after full development of the cavity. Cells farther away maintained cellular integrity and had signs of wall synthesis, perhaps from tight regulation of wall metabolism over short distances. These observations suggest that the cell degeneration might involve programmed cell death. We also show that warm, nonflooded or cold, flooded conditions that typically do not induce vascular cavity formation can also induce variations in cell wall ultrastructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...