Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 29(5): 6929-6942, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34463923

ABSTRACT

The spatial distribution of trace elements in surface sediments of the Hooghly estuary was studied over the monsoons in 2014-2017. As, Cd, Ni, Pb and U were two- to sixteen-fold the crust means with increasing levels toward the estuary, with Ni peak during the post-monsoon. Pearson's correlation matrix, cluster analysis, enrichment factors and pollution index revealed the anthropic source and association of trace elements with Fe, Mn and Al and of Pb with U. Geoaccumulation index revealed for Ni an extremely contaminated situation at the estuary water during monsoon and for Cd a heavily contaminated situation at freshwater location. The potential contamination index was >6; thus, sediments were very severely contaminated by As, Cd and Ni with worst situation for As and Cd at fresh and brackish water and during post-monsoon. The overall ecological risk was severe, 300≤RI<600 at all sites and seasons, especially after the monsoon, at fluvial and brackish locations.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Geologic Sediments , India , Metals, Heavy/analysis , Risk Assessment , Rivers , Trace Elements/analysis , Water Pollutants, Chemical/analysis
2.
Environ Geochem Health ; 42(9): 2627-2643, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32065314

ABSTRACT

Air pollution and dust pollution are major urban environmental issues, with road dust being a potential source and a pathway for human exposure. The developing megacities of India, where the population may spend a significant portion of their working lives close to the roadside, including consuming street food, have obvious source-pathway-receptor linkages. The aim of this study in Kolkata and Bengaluru, India, was to evaluate the risk to human health from inorganic components of road dust. Samples were collected and analysed from a cross section of urban environments for a wide range of anthropogenic and geogenic elements, some such as antimony showing an increase in response to vehicle activity. Calculated enrichment factors relative to crustal abundance demonstrated significant enrichment in common heavy metals and less commonly reported elements, e.g. molybdenum, antimony, that may be used as contaminant markers. Factor analysis gave multielement signatures associated with geography, vehicle traffic and local industry. The bio-accessibility of road dusts in terms of ingestion was determined using the BARGE method with more than 50% of zinc and lead being available in some cases. A formal human health risk assessment using the US EPA framework showed that lead in Kolkata and chromium in Bengaluru were the elements of most concern amongst chromium, nickel, copper, zinc and lead. However, the only risk combination (hazard index) shown to be significant was lead exposure to children in Kolkata. Ingestion dominated the risk pathways, being significantly greater than dermal and inhalation routes.


Subject(s)
Dust/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Metals, Heavy/analysis , Air Pollution/analysis , Child , Cities , Eating , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Humans , India , Industry , Risk Assessment
3.
Environ Sci Pollut Res Int ; 27(11): 12658-12672, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32006334

ABSTRACT

The present work represented first study of the spatio-seasonal distribution of the multi-elements in the suspended particulate matter (SPM) of the tropical Hooghly river estuary (HRE), eastern part of India. The high load of SPM (20-3460 mg/l) might have induced negative impact on the phytoplankton density. The relative abundance of the studied elements exhibited the following decreasing trend (concentration in µg/g and %): Si(26.44 ± 3.75%) > Al(7.94 ± 1.52%) > Fe(6.17 ± 1.9%) > K(3.05 ± 1.5%) > Ca(1.97 ± 1.11%) > Mg(1.57 ± 1.71%) > Na(1.45 ± 8.40%) > Mn(1273 ± 2003) > Zn(178.43 ± 130.95) > V(151.54 ± 27.13) > Cr(147.08 ± 32.21) > Cu(62.06 ± 14.03) > Ni(49.64 ± 12.09) > Pb(21.5 ± 10.45). The accumulation of Ni, Cr, Pb, and Cu is mainly controlled by the formation of Fe hydroxides along with particulate organic carbon (POC) and salinity. The average geo-accumulation index (Igeo) and enrichment factor (EF) endorsed the substantial input of Cr (Igeo = 0.037; EF = 1.61) and Zn (Igeo = 0.123; EF = 2.07) from diffused pollution sources. From ecotoxicological point of view, the quality guidelines (QGs) suggested that Cr and Ni might possess frequent adverse biological effects. However, the mean probable effect level (PEL) quotient values revealed 49% probability of toxicity to the aquatic biota for five toxic elements (Cr, Ni, Cu, Zn, and Pb). The geochemical approaches, pollution indices, and statistical evaluation together revealed low to moderate contamination in the estuary. This baseline data would be beneficial in adopting proper management strategies for sustainable utilization and restoration of the water resources. The authors strongly recommend continuous systematic monitoring and installation of treatment plants for management of this stressed estuary.


Subject(s)
Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Estuaries , Geologic Sediments , India , Particulate Matter/analysis , Rivers , Seasons
4.
Mar Pollut Bull ; 146: 39-49, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426172

ABSTRACT

This study investigated polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds such as polychlorinated biphenyls (PCBs) and DDT-related pesticides in surface sediments of Hooghly estuary and the Sundarban mangrove wetlands. Concentrations of ∑17PAH, ∑182PCB and ∑6DDT ranged from 15.4 to 1731, not detected (nd) to 13.5 and nd to 8.97 ng g-1 dry weight, respectively. Low levels of PCBs and low to moderate concentrations of DDTs and PAHs reflected recent development in West Bengal, which was dominated by agriculture and multifarious industries in the past. Diagnostic ratios suggested that major sources of PAHs are combustion processes, DDTs are input by agriculture, antifouling paints and public health campaigns, and organochlorines are predominantly from industrial origin. Heavier PCB congeners suggest local sources and short-range transport of such chemicals. Decision makers may use these findings for managing the Hooghly River watershed in order to promote a sustainable development on the eastern coast of India.


Subject(s)
Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Estuaries , Geologic Sediments/chemistry , Hydrocarbons, Chlorinated/analysis , India , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollution, Chemical/analysis , Wetlands
5.
Chemosphere ; 232: 439-452, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31158639

ABSTRACT

This study investigated the role of an allochthonous Gram-positive wastewater bacterium (Bacillus sp. KUJM2) selected through rigorous screening, for the removal of potentially toxic elements (PTEs; As, Cd, Cu, Ni) and promotion of plant growth under PTE-stress conditions. The dried biomass of the bacterial strain removed PTEs (5 mg L-1) from water by 90.17-94.75 and 60.4-81.41%, whereas live cells removed 87.15-91.69 and 57.5-78.8%, respectively, under single-PTE and co-contaminated conditions. When subjected to a single PTE, the bacterial production of indole-3-acetic acid (IAA) reached the maxima with Cu (67.66%) and Ni (64.33%), but Cd showed an inhibitory effect beyond 5 mg L-1 level. The multiple-PTE treatment induced IAA production only up to 5 mg L-1 beyond which inhibition ensued. Enhanced germination rate, germination index and seed production of lentil plant (Lens culinaris) under the bacterial inoculation indicated the plant growth promotion potential of the microbial strain. Lentil plants, as a result of bacterial inoculation, responded with higher shoot length (7.1-27.61%), shoot dry weight (18.22-36.3%) and seed production (19.23-29.17%) under PTE-stress conditions. The PTE uptake in lentil shoots decreased by 67.02-79.85% and 65.94-78.08%, respectively, under single- and multiple-PTE contaminated conditions. Similarly, PTE uptake was reduced in seeds up to 72.82-86.62% and 68.68-85.94%, respectively. The bacteria-mediated inhibition of PTE translocation in lentil plant was confirmed from the translocation factor of the respective PTEs. Thus, the selected bacterium (Bacillus sp. KUJM2) offered considerable potential as a PTE remediating agent, plant growth promoter and regulator of PTE translocation curtailing environmental and human health risks.


Subject(s)
Bacillus/growth & development , Lens Plant/growth & development , Soil Pollutants/analysis , Wastewater/microbiology , Bacillus/metabolism , Biodegradation, Environmental , Germination/drug effects , Indoleacetic Acids/metabolism , Lens Plant/microbiology , Plant Roots/growth & development , Plant Roots/microbiology , Soil Pollutants/toxicity
6.
Chemosphere ; 221: 154-165, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30639811

ABSTRACT

The spatial distribution, source identification and ecotoxicological impact of a group of persistent organic pollutants (POPs: dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexanes (HCHs), polychlorobiphenyls (PCBs), polychlorobenzenes (PCBzs)), and polyaromatic hydrocarbons (PAHs) were investigated in surface sediment samples (0-5 cm, <63 µm grain size) along the ecologically stressed Hooghly River estuary, East India. The results demonstrated a wide range of concentrations (ng/g dry weight) with the following decreasing order: ∑16PAHs (3.3-630) > ∑6DDTs (0.14-18.6) > ∑7PCBs (0.28-7.7) > ∑2PCBzs (0.01-1.3) > ∑5HCH (0.10-0.6), with a dominance of p,p'-DDT and higher molecular weight PAHs. Selected diagnostic ratios indicated a mixture of both pyrolytic and petrogenic sources of PAHs, inputs of weathered DDT and their degradation in oxidizing environment, and a predominance of industrial input over the agricultural wastes. The cumulative impact of the pollutants (effective range medium quotient (ERMq): 0.01-0.16) reflected minimal to low ecotoxicological risk, with highest probability of toxic effects towards surrounding biota at Barrackpore (21%). ∑6DDTs exceeded the effect range low value resulting occasional adverse impact to the sediment dwelling organisms. Among the PAHs, the 4-ringed compounds accounted for 68% of the PAHs. Further, carcinogenic PAHs (BaA, Chry, BbF, BkF, BaP, DahP, Inp) possessed highest cancer risk (CR = 2.09 × 10-3) to the local population when exposed to the sediments from the studied area and ingestion was found to be the primary process of contamination. The study strongly recommends a systematic monitoring of POPs and PAHs, being the Hooghly River water used by local people for their livelihood.


Subject(s)
Estuaries , Geologic Sediments/chemistry , Hydrocarbons, Chlorinated/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Environmental Monitoring/methods , India , Pesticides/analysis , Water Pollutants, Chemical/analysis
7.
Mar Pollut Bull ; 133: 402-414, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041329

ABSTRACT

The study presents a spatio-seasonal distribution of 13 trace elements in the surface water (0-5 cm) along the north-south gradient of Hooghly River Estuary, India, and subsequently evaluates the human health risk by adopting USEPA standards. An overall homogeneous spatial distribution of elements was pronounced, whereas an irregular and inconsistent seasonal pattern were recorded for the majority of the elements. The concentration range (µg/l) of the elements and their relative variability were obtained as follows in the decreasing order: Al (55,458-104,955) > Fe (35,676-78,427) > Mn (651.76-975.78) > V (85.15-147.70) > Si (16.0-153.88) > Zn (26.94-105.32) > Cr (21.61-106.02) > Ni (19.64-66.72) > Cu (34.70-65.80) > Pb (26.40-37.48) > Co (11.16-23.01) > As (0.10-8.20) > Cd (1.19-5.53). Although Pb, Ni, Cr, Al, Fe, and Mn exceeded the WHO prescribed threshold limit for drinking water, Metal Pollution Index values (8.02-11.86) superseded the upper threshold limit endorsing adverse impact on biota. The studied elements were justified to have a non-carcinogenic risk as derived from hazard quotient and hazard index values. However, the trace elements As, Cd, Pb, and Cr exceeded the upper limit of cancer risk (10-4), thereby leading to carcinogenic risk concern for both children and adult population groups, where children are more susceptible than the adults. Hence, evaluation of bioavailable fractions of the elements is required for proper management of this stressed fluvial system.


Subject(s)
Estuaries , Metals/analysis , Child , Environmental Monitoring , Humans , India , Risk Assessment , Rivers , Spatio-Temporal Analysis , Trace Elements/analysis
8.
Biodegradation ; 29(4): 323-337, 2018 08.
Article in English | MEDLINE | ID: mdl-29789975

ABSTRACT

The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L-1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 µg mL-1) at 5 mg mL-1 L-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L-1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.


Subject(s)
Bacillus licheniformis/isolation & purification , Digestive System/microbiology , Environmental Restoration and Remediation , Extracellular Space/chemistry , Oligochaeta/microbiology , Polymers/chemistry , Animals , Bacillus licheniformis/metabolism , Biodegradation, Environmental , Germination , Indoleacetic Acids/metabolism , Metals, Heavy/isolation & purification , Phenotype , Phosphates/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Seeds/growth & development , Soil Pollutants/analysis , Solubility , Surface-Active Agents , Vigna/growth & development
9.
Mar Pollut Bull ; 127: 117-130, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29475643

ABSTRACT

The spatial and seasonal distribution of trace elements (TEs) (n=16) in surficial sediment were examined along the Hooghly River Estuary (~175km), India. A synchronous elevation of majority of TEs concentration (mgkg-1) was encountered during monsoon with the following descending order: Al (67070); Fe (31300); Cd (5.73); Cr (71.17); Cu (29.09); Mn (658.74); Ni (35.89). An overall low and homogeneous concentration of total Hg (THg=17.85±4.98ngg-1) was recorded in which methyl mercury (MeHg) shared minor fraction (8-31%) of the THg. Sediment pollution indices, viz. geo-accumulation index (Igeo) and enrichment factor (EF) for Cd (Igeo=1.92-3.67; EF=13.83-31.17) and Ba (Igeo=0.79-5.03; EF=5.79-108.94) suggested high contamination from anthropogenic sources. From factor analysis it was inferred that TEs primarily originated from lithogenic sources. This study would provide the latest benchmark of TE pollution along with the first record of MeHg in this fluvial system which recommends reliable monitoring to safeguard geochemical health of this stressed environment.


Subject(s)
Environmental Monitoring/methods , Estuaries , Geologic Sediments/chemistry , Mercury/analysis , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , India , Seasons
10.
Environ Geochem Health ; 40(1): 567, 2018 02.
Article in English | MEDLINE | ID: mdl-29302895

ABSTRACT

Unfortunately, in the original publication of the article, Prof. Yong Sik Ok's affiliation was incorrectly published. The author's affiliation is as follows.

11.
Environ Sci Pollut Res Int ; 25(6): 5681-5699, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29230645

ABSTRACT

The present work investigated the spatial distribution and ecological risk assessment of total and mild acid-leachable trace elements in surface sediments (top 0-10 cm; grain size ≤ 63 µm) along the Hooghly (Ganges) River Estuary and Sundarban Mangrove Wetland, India. The trace elements, analyzed by ICPMS, showed wide range of variations with the following descending order (mean values expressed in milligrams per kilogram): Fe (25,050 ± 4918) > Al (16,992 ± 4172) > Mn (517 ± 102) > Zn (53 ± 18) > Cu (33 ± 11) > Cr (29 ± 7) > Ni (27 ± 6) > Pb (14 ± 3) > As (5 ± 1) > Se (0.37 ± 0.10) > Cd (0.17 ± 0.13) > Ag (0.16 ± 0.19) > Hg (0.05 ± 0.10). In the acid-leachable fraction, Cd (92%) is dominated followed by Pb (81%), Mn (77%), Cu (70%), and Se (58%) indicating their high mobility, imposing negative impact on the adjacent benthos. The sediment pollution indices (both enrichment factor and contamination factor) suggested severe pollution by Ag at the sampling site Sajnekhali, a wildlife sanctuary in Sundarban. The mean probable effect level quotient indicated that surface sediments in the vicinity of the studied region have 21% probability of toxicity to biota. The result of multivariate analyses affirms lithogenic sources (e.g., weathering parent rocks, dry deposition) for As, Pb, Cr, Cu, and Ni, whereas Cd and Hg originated from anthropogenic activities (such as urban and industrial activities). Both human-induced stresses and natural processes controlled trace element accumulation and distribution in the estuarine system, and remedial measures are required to mitigate the potential impacts of these hazardous trace elements.


Subject(s)
Environmental Monitoring/methods , Estuaries , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Wetlands , Acids/analysis , Biota/drug effects , Geologic Sediments/analysis , India , Metals, Heavy/analysis
12.
Mar Pollut Bull ; 126: 592-599, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28974303

ABSTRACT

Spatio-temporal and seasonal variation of the water quality characteristics of the Hooghly River Estuary, India were studied considering eight stations of diverse eco-hydrological characteristics. Wide variations in turbidity, total dissolved solids and fecal coliform exceeded the permissible BIS drinking water level limit. The estuary is observed to be relatively low-oxygenated, mesotropic and phosphate limiting. Spatial heterogeneity and impact of the southwest monsoon were remarkably pronounced in the distribution of the inorganic nutrients revealing the following values (expressed in µgatml-1): nitrate+nitrite (2.42-37.19), phosphate (0.41-1.52) and silicate (38.5-187.75). Water Quality Index (WQI) values confirmed the prevailing 'bad' condition, detrimental for sustenance of aquatic biota. Results of Principal Component Analysis identified the major factors liable for water quality deterioration while cluster analysis categorized the stations on the basis of similar water quality status. The authors recommend adopting preventive measures for water quality improvement linked to biodiversity conservation.


Subject(s)
Estuaries , Water Quality , Cluster Analysis , Enterobacteriaceae/isolation & purification , Environmental Monitoring/statistics & numerical data , India , Nitrates/analysis , Nitrites/analysis , Phosphates/analysis , Principal Component Analysis , Rivers , Seasons , Silicates/analysis , Water Pollutants/analysis
13.
Environ Geochem Health ; 39(6): 1563-1581, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28364400

ABSTRACT

The study examined the impact of raking and fish bioturbation on modulating phosphorus (P) concentrations in the water and sediment under different trophic conditions. An outdoor experiment was set to monitor physicochemical and microbiological parameters of water and sediment influencing P diagenesis. A pilot study with radioactive 32P was also performed under the agency of raking and bacteria (Bacillus sp.). Raking was more effective in release of P under unfertilized conditions by significantly enhancing orthophosphate (35%) and soluble reactive phosphate (31.8%) over respective controls. Bioturbation increased total and available P in sediments significantly as compared to control. The rates of increase were higher in the unfertilized conditions (17.6-28.4% for total P and 12.2 to 23.2% for available P) than the fertilized ones (6.5-12.4% for total P and 9.1 to 15% for available P). The combined effects of raking and bioturbation on orthophosphate and soluble reactive phosphate were also stronger under unfertilized state (54.5 and 81.8%) than fertilized ones (50 and 70%). The tracer signature showed that coupled action of introduced bacteria and repeated raking resulted in 59.2, 23 and 16% higher counts of radioactive P than the treatments receiving raking once, repeated raking and bacteria inoculation, respectively. Raking alone or in sync with bioturbation exerted pronounced impact on P diagenesis through induction of coupled mineralization and nutrient release. It has significant implication for performing regular raking of fish-farm sediments and manipulation of bottom-grazing fish to regulate mineralization of organic matter and release of obnoxious gases from the system. Further, they synergistically can enhance the buffering capacity against organic overload and help to maintain aquatic ecosystem health.


Subject(s)
Ecosystem , Geologic Sediments/chemistry , Phosphorus Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Water/chemistry , Aquaculture , Bacillus/isolation & purification , Bacillus/metabolism , Colony Count, Microbial , Nitrates/analysis , Nitrites/analysis , Oxygen/analysis , Phosphates/analysis , Pilot Projects , Water Microbiology
14.
Environ Geochem Health ; 39(6): 1583-1593, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28397062

ABSTRACT

Water and soil pollution by toxic heavy metals (HMs) is increasing globally because of increase in population, industrialization and urbanization. It is a burning problem for the public, scientists, academicians and politicians how to tackle the toxic contaminants which jeopardize the environment. One possible solution for pollution abatement is a bioremediation-effective and innovative technology that uses biological systems for treatment of contaminants. Many bacteria synthesize indole-3-acetic acid (IAA) which is a product of L-tryptophan metabolism and belongs to the auxin class of plant growth-promoting hormone. The present study aimed at assessing the resistance pattern of wastewater bacteria against multiple HMs and plant growth promotion activity associated with IAA. A Gram-negative bacterial strain Pseudomonas aeruginosa KUJM was isolated from Kalyani Sewage Treatment Plant. This strain showed the potential to tolerate multiple contaminations such as As(III) (50 mM), As(V) (800 mM), Cd (8 mM), Co (18 mM), Cu (7 mM), Cr (2.5 mM), Ni (3 mM) and Zn (14 mM). The capability of IAA production at different tryptophan concentration (1, 2, 5 and 10 mg mL-1) was determined, and seed germination-enhancing potential was also estimated on lentil (Lens culinaris). Such type of HM-resistant, IAA-producing and seed germination-enhancing P. aeruginosa KUJM offer great promise as inoculants to promote plant growth in the presence of toxic HMs, as well as plant inoculant systems useful for phytoremediation of polluted soils. Hence, P. aeruginosa KUJM finds significant applications in HM-contaminated poor agricultural field as well as in bioremediation of HM-contaminated wastewater system.


Subject(s)
Drug Resistance, Multiple, Bacterial , Lens Plant/growth & development , Pseudomonas aeruginosa/physiology , Wastewater/microbiology , Adaptation, Physiological , Arsenic/toxicity , Environmental Restoration and Remediation/methods , Germination , Indoleacetic Acids/metabolism , Metals, Heavy/toxicity , Phylogeny , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , RNA, Ribosomal, 16S/genetics , Soil Pollutants/toxicity , Water Pollutants, Chemical/toxicity
15.
Environ Geochem Health ; 39(6): 1245-1258, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28401375

ABSTRACT

Our objective was to evaluate distribution and accumulation of trace elements (TEs) in surface sediments along the Hooghly (Ganges) River Estuary, India, and to assess the potential risk with view to human health. The TE concentrations (mg kg-1 dry weight) exhibited a wide range in the following order: Al (31.801 ± 15.943) > Fe (23.337 ± 7584) > Mn (461 ± 147) > S (381 ± 235) > Zn (54 ± 18) > V (43 ± 14) > Cr (39 ± 15) > As (34 ± 15) > Cu (27 ± 11) > Ni (24 ± 9) > Se (17 ± 8) > Co (11 ± 3) > Mo (10 ± 2) > Hg (0.02 ± 0.01). Clay, silt, iron, manganese and sulphur were important for the accumulation of TE in the sediments as confirmed by factor analysis and Pearson correlation. The accumulation and dispersal of TEs were most likely to be governed by both tide-induced processes and anthropogenic inputs from point and non-point sources. Enrichment factor analysis and geoaccumulation index revealed serious contamination of the sediments with Se and As, while comparing the consensus-based sediment quality guidelines (SQGs), adverse biological effects to benthic fauna might be caused by As, Cu, Ni and Cr. This investigation may serve as a model study and recommends continuous monitoring of As, Se, Cu, Ni and Cr to ascertain that SQGs with respect to acceptable levels of TEs to safeguard geochemical health and ecology in the vicinity of this estuary.


Subject(s)
Estuaries , Geologic Sediments/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Arsenic/analysis , Arsenic/toxicity , Environmental Exposure , Factor Analysis, Statistical , Humans , India , Metals, Heavy/toxicity , Risk Assessment , Spectrophotometry, Atomic
16.
Bull Environ Contam Toxicol ; 98(5): 595-600, 2017 May.
Article in English | MEDLINE | ID: mdl-28160041

ABSTRACT

Establishment of analytical methods for detection and characterization of nanoparticles in the environment are gaining prominence across the globe. The present study was designed to quantify titanium (Ti) and to characterize titanium dioxide nanoparticles (TNP) from a municipal sewage treatment plant, by inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of Ti & TNP were 1085 & 13.6 mg/kg in the influent sewage and 298 & 3.3 mg/kg in the aeration tank contents, respectively. The size of TNP ranged between 71-145 nm in the sludge fraction. Determining environmentally realistic concentrations of TNP could serve as a tracer material for characterization of those nanomaterials with similar size and aggregation properties. Furthermore, inference of Ti and TNP in municipal sewage in the study will also help in environmental risk assessment of nanomaterials.


Subject(s)
Metal Nanoparticles/analysis , Sewage/chemistry , Titanium/analysis , Mass Spectrometry/methods , Particle Size
17.
Mar Pollut Bull ; 124(2): 1078-1088, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28187966

ABSTRACT

The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (Igeo) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals.


Subject(s)
Biodegradation, Environmental , Geologic Sediments/chemistry , Metals/metabolism , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism , Wetlands , Biota , Environmental Monitoring , India , Mercury/metabolism , Metals, Heavy/analysis
18.
Chemosphere ; 171: 544-553, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28039833

ABSTRACT

The present study was designed to assess the physiological and biochemical changes in roots and shoots of the herb Acalypha indica grown under hydroponic conditions during exposure to lead (Pb) (100-500 mg L-1) for 1-12 d. The accumulation of Pb by A. indica plants was found to be 121.6 and 17.5 mg g-1 dry weight (DW) in roots and shoots, respectively, when exposed to a Pb concentration of 500 mg L-1. The presence of Pb ions in stem, root and leaf tissues was confirmed by scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analyses. Concerning the activity of antioxidant enzymes, viz., peroxidase (POX) catalase (CAT) and ascorbate peroxidase (APX), they were induced at various regimes during 5, 8 and 12 d of Pb exposure in both the leaves and roots than untreated controls. Lead treatment increased superoxide dismutase (SOD) activity in both the leaf and root tissues over control, irrespective of the duration of exposure. Anew, it was observed that Pb treatments induced variations in the number and intensity of protein bands. Random amplified polymorphic DNA (RAPD) results show that the Pb treatment caused genotoxicity on DNA molecules as evidenced by the amplification of new bands and the absence of normal DNA amplicons in treated plants. Results confirm that A. indica is a Pb accumulator species, and the antioxidants might play a crucial role in the detoxification of Pb-induced toxic effects.


Subject(s)
Acalypha/drug effects , Lead/toxicity , Acalypha/genetics , Acalypha/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , DNA, Plant/drug effects , Hydroponics , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Peroxidase/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Plants, Medicinal/drug effects , Plants, Medicinal/metabolism , Random Amplified Polymorphic DNA Technique , Superoxide Dismutase/metabolism
19.
Chemosphere ; 168: 1430-1438, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27912912

ABSTRACT

Polyurethane foam (PUF) disk passive air samplers were deployed concurrently at five sites across Kolkata megacity and the rural mangrove wetland of Sundarban (UNESCO World Heritage Site) between January-March in 2014. Samples were analyzed for hexachlorocyclohexanes (HCHs), dichlorodiphenyltricholoroethanes (DDTs), polychlorinated biphenyls (PCBs) and, polybrominated diphenyl ethers (PBDEs) using gas chromatography and mass spectrometry (GC-MS). Derived air concentrations (pg/m3) for Kolkata ranged: for ∑α- and γ-HCH between 70 and 207 (114 ± 62), ∑6DDTs: 127-216 (161 ± 36), ∑7PCBs: 53-213 (141 ± 64), and ∑10PBDEs: 0.30-23 (11 ± 9). Low values for all the studied POPs were recorded in the remote area of the Sundarban site (with the exception of DDTs: o,p'-DDT and p,p'-DDT), where ∑4DDTs was 161 ± 36. In particular, the site of Ballygunge, located in the southern part of Kolkata, showed the highest level of all the metabolites/congeners of POPs, suggesting a potential hot spot of usage and emissions. From HCHs, α-/γ-HCH isomers ratio was low (0.67-1.96) indicating a possible sporadic source of lindane. γ-HCH dominated the HCH signal (at 3 sites) reflecting wide spread use of lindane both in Kolkata and the Sundarban region; however, isomeric composition in Kolkata also suggests potential technical HCHs use. Among DDT metabolites, both o,p'-DDT and p,p'-DDT shared the dominant percentages accounting for ∼26-46% of total DDTs followed by p,p'-DDE (∼12-19%). The PCB congener profile was dominated by tri- and tetra-Cl at the southern and eastern part of Kolkata. These results are one of the few contributions that reports air concentrations of POPs, concurrently, at urban and remote villages in India. These data are useful to assess atmospheric pollution levels and to motivate local and regional authorities to better understand the potential human exposure risk associated to urban areas in India.


Subject(s)
Air Pollutants/analysis , DDT/analysis , Halogenated Diphenyl Ethers/analysis , Hexachlorocyclohexane/analysis , Polychlorinated Biphenyls/analysis , Cities , Environmental Monitoring , India , Wetlands
20.
Mar Pollut Bull ; 114(1): 134-143, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27587233

ABSTRACT

The feasibility of a potential bioindicator based on functional groups of microzooplankton tintinnids for bioassessments of water quality status was studied during southwest monsoon (June to September) along the coastal waters of Kalpakkam, India during 2012-2015. The work highlights the following features (1) tintinnid community composed of 28 species belonging to 11 genera and 9 families, revealed significant differences among the four study sites (2) maximum numerical abundance (2224±90ind. l-1) and species diversity (H'=2.66) of tintinnid were recorded towards Bay of Bengal whereas minimum abundance (720±35ind. l-1) and diversity (H'=1.74) were encountered in the backwater sites, (3) multivariate analyses [RELATE, Biota-environment (BIOENV) and canonical analysis of principal coordinates (CAP)] reveal that chl a, nitrate and phosphate were the potential causative factors for tintinnid distribution. Based on the results, we suggest that tintinnids may be used as a potential bioindicator of water quality status in marine ecosystem.


Subject(s)
Ciliophora/classification , Environmental Monitoring/methods , Seawater/parasitology , Ecosystem , Environment , Environmental Monitoring/standards , India , Seasons , Water , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...