Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 42(9): 2627-2643, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32065314

ABSTRACT

Air pollution and dust pollution are major urban environmental issues, with road dust being a potential source and a pathway for human exposure. The developing megacities of India, where the population may spend a significant portion of their working lives close to the roadside, including consuming street food, have obvious source-pathway-receptor linkages. The aim of this study in Kolkata and Bengaluru, India, was to evaluate the risk to human health from inorganic components of road dust. Samples were collected and analysed from a cross section of urban environments for a wide range of anthropogenic and geogenic elements, some such as antimony showing an increase in response to vehicle activity. Calculated enrichment factors relative to crustal abundance demonstrated significant enrichment in common heavy metals and less commonly reported elements, e.g. molybdenum, antimony, that may be used as contaminant markers. Factor analysis gave multielement signatures associated with geography, vehicle traffic and local industry. The bio-accessibility of road dusts in terms of ingestion was determined using the BARGE method with more than 50% of zinc and lead being available in some cases. A formal human health risk assessment using the US EPA framework showed that lead in Kolkata and chromium in Bengaluru were the elements of most concern amongst chromium, nickel, copper, zinc and lead. However, the only risk combination (hazard index) shown to be significant was lead exposure to children in Kolkata. Ingestion dominated the risk pathways, being significantly greater than dermal and inhalation routes.


Subject(s)
Dust/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Metals, Heavy/analysis , Air Pollution/analysis , Child , Cities , Eating , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Humans , India , Industry , Risk Assessment
2.
Environ Geochem Health ; 39(6): 1563-1581, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28364400

ABSTRACT

The study examined the impact of raking and fish bioturbation on modulating phosphorus (P) concentrations in the water and sediment under different trophic conditions. An outdoor experiment was set to monitor physicochemical and microbiological parameters of water and sediment influencing P diagenesis. A pilot study with radioactive 32P was also performed under the agency of raking and bacteria (Bacillus sp.). Raking was more effective in release of P under unfertilized conditions by significantly enhancing orthophosphate (35%) and soluble reactive phosphate (31.8%) over respective controls. Bioturbation increased total and available P in sediments significantly as compared to control. The rates of increase were higher in the unfertilized conditions (17.6-28.4% for total P and 12.2 to 23.2% for available P) than the fertilized ones (6.5-12.4% for total P and 9.1 to 15% for available P). The combined effects of raking and bioturbation on orthophosphate and soluble reactive phosphate were also stronger under unfertilized state (54.5 and 81.8%) than fertilized ones (50 and 70%). The tracer signature showed that coupled action of introduced bacteria and repeated raking resulted in 59.2, 23 and 16% higher counts of radioactive P than the treatments receiving raking once, repeated raking and bacteria inoculation, respectively. Raking alone or in sync with bioturbation exerted pronounced impact on P diagenesis through induction of coupled mineralization and nutrient release. It has significant implication for performing regular raking of fish-farm sediments and manipulation of bottom-grazing fish to regulate mineralization of organic matter and release of obnoxious gases from the system. Further, they synergistically can enhance the buffering capacity against organic overload and help to maintain aquatic ecosystem health.


Subject(s)
Ecosystem , Geologic Sediments/chemistry , Phosphorus Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Water/chemistry , Aquaculture , Bacillus/isolation & purification , Bacillus/metabolism , Colony Count, Microbial , Nitrates/analysis , Nitrites/analysis , Oxygen/analysis , Phosphates/analysis , Pilot Projects , Water Microbiology
3.
Chemosphere ; 171: 544-553, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28039833

ABSTRACT

The present study was designed to assess the physiological and biochemical changes in roots and shoots of the herb Acalypha indica grown under hydroponic conditions during exposure to lead (Pb) (100-500 mg L-1) for 1-12 d. The accumulation of Pb by A. indica plants was found to be 121.6 and 17.5 mg g-1 dry weight (DW) in roots and shoots, respectively, when exposed to a Pb concentration of 500 mg L-1. The presence of Pb ions in stem, root and leaf tissues was confirmed by scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analyses. Concerning the activity of antioxidant enzymes, viz., peroxidase (POX) catalase (CAT) and ascorbate peroxidase (APX), they were induced at various regimes during 5, 8 and 12 d of Pb exposure in both the leaves and roots than untreated controls. Lead treatment increased superoxide dismutase (SOD) activity in both the leaf and root tissues over control, irrespective of the duration of exposure. Anew, it was observed that Pb treatments induced variations in the number and intensity of protein bands. Random amplified polymorphic DNA (RAPD) results show that the Pb treatment caused genotoxicity on DNA molecules as evidenced by the amplification of new bands and the absence of normal DNA amplicons in treated plants. Results confirm that A. indica is a Pb accumulator species, and the antioxidants might play a crucial role in the detoxification of Pb-induced toxic effects.


Subject(s)
Acalypha/drug effects , Lead/toxicity , Acalypha/genetics , Acalypha/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , DNA, Plant/drug effects , Hydroponics , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Peroxidase/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Plants, Medicinal/drug effects , Plants, Medicinal/metabolism , Random Amplified Polymorphic DNA Technique , Superoxide Dismutase/metabolism
4.
Proc Natl Acad Sci U S A ; 111(23): 8524-9, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24912168

ABSTRACT

Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models--which assume ecological equivalence of species--to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Subject(s)
Algorithms , Biodiversity , Marine Biology/methods , Models, Biological , Cold Climate , Geography , Population Density , Population Dynamics , Species Specificity , Tropical Climate
5.
Environ Monit Assess ; 171(1-4): 411-24, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20058071

ABSTRACT

A significant variation in physicochemical properties of the Kalpakkam coastal waters, eastern part of India, was observed during the event of southwest to northeast monsoon transition. Increase in nitrate, total nitrogen, and silicate concentrations were noticed during post-transition period. Ammonia concentration was at peak during transition period as compared to pre- and post-transition periods. Hypo-saline condition (~23 psu) was observed during post-transition as the surface water salinity decreased by ~10 psu from the pre-transitional values. Turbidity, suspended particulate matter, phosphate and total phosphorous values decreased marginally, coinciding with northward to southward current reversal. A drastic decrease (eightfold) in chlorophyll-a concentration was observed in the coastal water during post-transition period.


Subject(s)
Cyclonic Storms , Seawater/chemistry , Ammonia/analysis , Chlorophyll/analysis , Cluster Analysis , Environmental Monitoring , India , Nitrates/analysis , Nitrogen/analysis , Phosphorus/analysis , Principal Component Analysis , Salinity , Seasons , Silicates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...