Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 352(1): 58-71, 2005 Sep 09.
Article in English | MEDLINE | ID: mdl-16081096

ABSTRACT

In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms. To define the functional role of the f and alpha/beta exons, we constructed combinations of TnT cDNAs from a single human fetal fast skeletal TnTbeta cDNA clone in order to circumvent the problem of N-terminal sequence heterogeneity present in wild-type TnT isoforms, irrespective of the stage of development. Nucleotide sequences of these constructs, viz. TnTalpha, TnTalpha + f, TnTbeta - f and TnTbeta are identical, except for the presence or absence of the alpha or beta and f exons. Our results, using the recombinant TnT isoforms in different functional in vitro assays, show that the presence of the f peptide in the N-terminal T1 region of TnT, has a strong inhibitory effect on binary interactions between TnT and other thin filament proteins, TnI, TnC and Tm. The presence of the f peptide led to reduced Ca2+-dependent ATPase activity in a reconstituted thin filament, whereas the contribution of the alpha and beta peptides in the biological activity of TnT was primarily modulatory. These results indicate that the f peptide confers an inhibitory effect on the biological function of fast skeletal TnT and this can be correlated with changes in the Ca2+ regulation associated with development in fast skeletal muscle.


Subject(s)
Exons , Fetus/physiology , Muscle Fibers, Fast-Twitch/metabolism , Troponin T/genetics , Troponin T/metabolism , Adenosine Triphosphatases/metabolism , Adult , Alternative Splicing , Calcium/metabolism , Humans , Multiprotein Complexes , Muscle Fibers, Fast-Twitch/cytology , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Troponin C/metabolism , Troponin I/metabolism , Troponin T/chemistry , Two-Hybrid System Techniques
2.
J Biol Chem ; 280(1): 538-47, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15507453

ABSTRACT

We have previously identified evolutionarily conserved heptad hydrophobic repeat (HR) domains in all isoprotein members of troponin T (TnT) and troponin I (TnI), two subunits of the Ca(2+)-regulatory troponin complex. Our suggestion that the HR domains are involved in the formation of a coiled-coil heterodimer of TnT and TnI has been recently confirmed by the crystal structure of the core domain of the human cardiac troponin complex. Here we studied a series of recombinant deletion mutants of the fast skeletal TnT to determine the minimal sequence required for stable coiled-coil formation with the HR domain of the fast skeletal TnI. Using circular dichroism spectroscopy, we measured the alpha helical content of the coiled-coil formed by the various TnT peptides with TnI HR domain. Sedimentation equilibrium experiments confirmed that the individual peptides of TnT were monomeric but formed heterodimers when mixed with HR domain of TnI. Isothermal titration calorimetry was then used to directly measure the affinity of the TnT peptides for the TnI HR domain. Surprisingly we found that the HR regions alone of the fast skeletal TnT and TnI, as defined earlier, were insufficient to form a coiled-coil. Furthermore we showed that an additional 14 amino acid residues N-terminal to the conserved HR region (TnT residues 165-178) are essential for the stable coiled-coil formation. We discuss the implication of our finding in the fast skeletal troponin isoform in the light of the crystal structure of the cardiac isoform.


Subject(s)
Troponin I/chemistry , Troponin T/chemistry , Humans , Models, Molecular , Muscle Fibers, Fast-Twitch/chemistry , Muscle Fibers, Fast-Twitch/metabolism , Peptide Fragments/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Troponin I/metabolism , Troponin T/metabolism
3.
DNA Seq ; 14(4): 233-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14631647

ABSTRACT

Transcription factors of the SMAD family relay signals from cell surface receptors to the nucleus in response to TGF-beta related soluble factors. Members of the nuclear factor I/CAAT box binding family (NFI/CTF) have been implicated as regulators of diverse biological processes such as adenovirus replication and transcription of TGF-responsive genes. There are highly conserved DNA binding domains in SMAD and NFI/CTF transcription factors that allow sequence specific DNA binding for members of each family. However, no homology relationship has been established for the DNA binding domains present in these families. For a better understanding of the structure and evolution of SMAD genes, we carried out a sensitive PSI-BLAST database search. This revealed significant similarities between the DNA binding domains of SMADs and NFI/CTF transcription factors. Enhanced graphic matrix analysis and multiple sequence alignment of the amino acid sequences of the SMAD and NFI/CTF DNA binding domains also show that these two classes of domains share considerable structural similarity. These results strongly suggest that these two classes of factors share a homologous DNA binding domain presumably resulting from a common ancestry. In contrast, the C-terminal transcription modulation domains of both SMAD and NFI/CTF families do not show any sequence similarity. Based on the structural relationship of their DNA binding domains, we propose that the SMAD and NFI/CTF transcription factors belong to new superfamily of genes.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , DNA-Binding Proteins/genetics , Multigene Family/genetics , Signal Transduction/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Databases, Genetic , Humans , Molecular Sequence Data , NFI Transcription Factors , Sequence Alignment , Smad Proteins
4.
Comp Funct Genomics ; 4(6): 609-25, 2003.
Article in English | MEDLINE | ID: mdl-18629027

ABSTRACT

We describe the cloning, sequencing and structure of the human fast skeletal troponin T (TNNT3) gene located on chromosome 11p15.5. The single-copy gene encodes 19 exons and 18 introns. Eleven of these exons, 1-3, 9-15 and 18, are constitutively spliced, whereas exons 4-8 are alternatively spliced. The gene contains an additional subset of developmentally regulated and alternatively spliced exons, including a foetal exon located between exon 8 and 9 and exon 16 or alpha (adult) and 17 or beta (foetal and neonatal). Exon phasing suggests that the majority of the alternatively spliced exons located at the 5' end of the gene may have evolved as a result of exon shuffling, because they are of the same phase class. In contrast, the 3' exons encoding an evolutionarily conserved heptad repeat domain, shared by both TnT and troponin I (TnI), may be remnants of an ancient ancestral gene. The sequence of the 5' flanking region shows that the putative promoter contains motifs including binding sites for MyoD, MEF-2 and several transcription factors which may play a role in transcriptional regulation and tissue-specific expression of TnT. The coding region of TNNT3 exhibits strong similarity to the corresponding rat sequence. However, unlike the rat TnT gene, TNNT3 possesses two repeat regions of CCA and TC. The exclusive presence of these repetitive elements in the human gene indicates divergence in the evolutionary dynamics of mammalian TnT genes. Homologous muscle-specific splicing enhancer motifs are present in the introns upstream and downstream of the foetal exon, and may play a role in the developmental pattern of alternative splicing of the gene. The genomic correlates of TNNT3 are relevant to our understanding of the evolution and regulation of expression of the gene, as well as the structure and function of the protein isoforms. The nucleotide sequence of TNNT3 has been submitted to EMBL/GenBank under Accession No. AF026276.

5.
DNA Seq ; 14(5): 339-50, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14756420

ABSTRACT

A cDNA clone encoding human fast skeletal myosin regulatory light chain (HSRLC) has been isolated and characterized from a fetal muscle cDNA library. The cDNA contains the coding sequence of 170 amino acids (aa) and 58 and 91 nucleotides in the 5' and 3' untranslated regions (UTRs), respectively. HSRLC is encoded by a single copy gene in the human genome and shows a tissue-specific pattern of expression in skeletal muscle. Comparison of derived amino acid sequence of HSRLC with database sequences reveals highly conserved 12 amino acid residues in a putative calcium-binding region. HSRLC is unique among all RLC sequences in having three consecutive potential phosphorylatable serine residues. The Cys-129 of HSRLC corresponds to the critical Gly-117 of scallop RLC that is essential for its regulatory function. The clusters of hydrophobic residues that are believed to stabilize the binding of NH2-terminal of RLC with myosin heavy chain show high sequence conservation in RLCs. Besides identifying specific targets for functional studies of HSRLC by mutagenesis, the results support the concept of an ancestral gene from which the RLC genes have evolved.


Subject(s)
Cardiac Myosins/metabolism , DNA, Complementary/isolation & purification , Evolution, Molecular , Muscle, Skeletal/metabolism , Myosin Light Chains/metabolism , 3' Untranslated Regions/physiology , Amino Acid Sequence , Cardiac Myosins/genetics , Cloning, Molecular , Conserved Sequence , DNA, Complementary/genetics , Gene Expression , Humans , Molecular Sequence Data , Myosin Light Chains/genetics , Organ Specificity , Protein Isoforms , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...