Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(28): 24102-24110, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874209

ABSTRACT

Microbial pathogenesis is considered one of the most critical health challenges worldwide. Although several antibiotics have been procured and used, the microbes often manage to escape and become resistant to antibiotics. Thus, the discovery of new antibiotics and designing smart approaches toward their delivery are of great importance. In many cases, the delivery agents using foreign chemicals like lipids or polymers induce immunogenic responses of varying degrees and are limited to a shorter circulatory time and burst release. In the current work, we have designed a novel antibiotic delivery system where the antibiotic is encapsulated into a blood component-platelet. Platelets have been previously reported as efficient drug delivery vehicles for targeting cancer cells. On the other hand, during platelet-bacterial interaction, platelets can act as covercytes. Keeping this in mind, smart antibiotic-loaded platelets have been used for killing bacterial cells. The loading of the antibiotic was done using its typical nature of engulfing surrounding small molecules. The water-soluble antibiotics were loaded directly into the platelet, whereas the hydrophobic antibiotics were preloaded in polycaprolactone (FDA-approved polymer)-based nanovesicles to make them solubilized prior to loading inside the platelets. The antibiotic-loaded platelets (containing hydrophilic antibiotics or hydrophobic antibiotic -encapsulated polymer nanoparticles) were found to be stable when studied through platelet aggregometry. The carrier showed bactericidal effects at a significantly lower concentration at which the free antibiotic has negligible efficacy. This could be attributed to the molecular confinement of the antibiotics inside the platelets, therefore causing localization of the drug and leading to efficient activity against bacteria. Interestingly, the smart antibiotic-loaded platelets were capable of killing the resistant strains too at the same lower concentration regime. Therefore, the antibiotic-loaded platelet could emerge as a potential strategy for efficient delivery of antibiotics with a significant reduction of the dose required to achieve the intended antibacterial efficacy. Moreover, this antibiotic delivery method can be very useful to minimize immunogenic responses due to antibiotic administration and to avoid the development of drug resistance due to the invisible mode of delivery.

2.
Front Chem ; 9: 629635, 2021.
Article in English | MEDLINE | ID: mdl-33708759

ABSTRACT

Immunotherapy holds great promise in overcoming the limitations of conventional regimens for cancer therapeutics. There is growing interest among researchers and clinicians to develop novel immune-strategies for cancer diagnosis and treatment with better specificity and lesser adversity. Immunomodulation-based cancer therapies are rapidly emerging as an alternative approach that employs the host's own defense mechanisms to recognize and selectively eliminate cancerous cells. Recent advances in nanotechnology have pioneered a revolution in the field of cancer therapy. Several nanomaterials (NMs) have been utilized to surmount the challenges of conventional anti-cancer treatments like cytotoxic chemotherapy, radiation, and surgery. NMs offer a plethora of exceptional features such as a large surface area to volume ratio, effective loading, and controlled release of active drugs, tunable dimensions, and high stability. Moreover, they also possess the inherent property of interacting with living cells and altering the immune responses. However, the interaction between NMs and the immune system can give rise to unanticipated adverse reactions such as inflammation, necrosis, and hypersensitivity. Therefore, to ensure a successful and safe clinical application of immunomodulatory nanomaterials, it is imperative to acquire in-depth knowledge and a clear understanding of the complex nature of the interactions between NMs and the immune system. This review is aimed at providing an overview of the recent developments, achievements, and challenges in the application of immunomodulatory nanomaterials (iNMs) for cancer therapeutics with a focus on elucidating the mechanisms involved in the interplay between NMs and the host's immune system.

3.
ACS Omega ; 4(5): 9480-9487, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31460039

ABSTRACT

Mercury (Hg) is one of the main water contaminants worldwide. In this study, we have developed both whole-cell and cell-free biosensors to detect Hg. Genetically modified plasmids containing the merR gene were used to design biosensors. Firefly luciferase (LucFF) and emerald green fluorescent protein (EmGFP) genes were separately introduced as a reporter. Both constructs showed a detection limit of 1 ppb (Hg) in Escherichia coli and the cell-free system. We found that higher concentrations of Hg become detrimental to bacteria. This cytotoxic effect shows an anomalous result in high Hg concentrations. This was also observed in the cell-free system. We found that EmGFP fluorescence was decreased in the cell-free system because of a change in pH and quenching effect by Hg excess. Once the pH was adjusted to 7 and a chelating agent was used, the EmGFP fluorescence was partially restored. These adjustments can only be done in the cell-free system after the GFP expression and not in whole cells where their number has been decreased because of toxicity. Therefore, we suggest the use of the cell-free-system, which not only reduces the total experimental time but also allows us to perform these postexperimental adjustments to achieve higher sensitivity. We would also recommend to perform more measurements at a time with different dilution factors to bring down the Hg concentration within the measurable limits or to use some other chelating agents which can further reduce the excess Hg concentration.

4.
Pharmacol Res Perspect ; 3(5): e00188, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26516592

ABSTRACT

Microparticles (MPs) have great potentiality in material science- based applications. Their use in biology is however limited to clinics and has rarely been exploited in the pharmaceutical context. Unlike nanoparticles (NPs), they are amenable to routine detection by flow cytometry and confocal microscopy. Though MPs can constitute a wide variety of materials, including ceramics, glass, polymers, and metals and can be synthesized by chemical process but wet processes for the preparation of microparticles have rarely been attemped. In this paper, a thrombotic route is shown to successfully generate biocompatible MP of a model anticancer drug (doxorubicin hydrochloride). Synthesis of MPs from platelets and drug loading in to these MPs was confirmed by flow cytometry and confocal microscopy. Human cervical cancer cell line (HeLa) was treated with these drug-loaded MPs to investigate whether the loaded MPs have the capacity to deliver drug to the cancer cells. In addition, Magnetic force microscopy was used to detect the preparation of MPs loaded with magnetic NPs. The efficiency of the drug-loaded MPs in inducing cytotoxicity in cancer cell line, shown to be significantly higher than the free drug itself. The drug-loaded MP is shown to have a much higher cytotoxic propensity than the free drug applied at comparable doses. The thrombotic approach can also be applied to synthesize MP containing NPs which in turn can lead to generate a wide variety of new biocompatible materials.

5.
Pharm Res ; 30(11): 2785-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23739991

ABSTRACT

PURPOSE: To develop an efficient biocompatible and targeted drug delivery system in which platelets, an essential blood component having a natural affinity for cancer cells, are used as carrier of anticancer drug as delivery of drug to the targeted site is crucial for cancer treatment. METHODS: Doxorubicin hydrochloride, a potent anti cancer drug, was delivered in lung adenocarcinoma cell line (A549) using platelet as a delivery agent. This delivery mode was also tested in Ehrlich ascites carcinoma (EAC) bearing mice in presence and absence of platelets. RESULTS: The results show that platelets can uptake the drug and release the same upon activation. The efficiency of drug loaded platelets in inducing cytotoxicity was significantly higher in both in vitro and in vivo model, as compared to the free drug. CONCLUSIONS: The proposed drug delivery strategy may lead to clinical improvement in the management of cancer treatment as lower drug concentration can be used in a targeted mode. Additionally the method can be personalized as patient's own platelet can be used for deliver various drugs.


Subject(s)
Adenocarcinoma/drug therapy , Antibiotics, Antineoplastic/administration & dosage , Blood Platelets/metabolism , Cell Communication , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Lung Neoplasms/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Antibiotics, Antineoplastic/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Cell Line, Tumor , Doxorubicin/therapeutic use , Humans , Lung/drug effects , Lung/pathology , Lung Neoplasms/pathology , Male , Mice
6.
Cancer Nanotechnol ; 2(1-6): 37-47, 2011.
Article in English | MEDLINE | ID: mdl-26069483

ABSTRACT

The conventional chemotherapeutic agents used in the treatment of human malignancies are directed nonspecifically against both malignant and nonmalignant cells, often limiting their efficacy with having serious side effects. Recent development of drug delivery vehicles has opened up the possibility of targeted drug delivery systems with the potential of achieving maximum efficacy with minimal toxicity. The possibility of using a nanomaterial as a combinational drug component is intuitively evident as it would compensate the toxicity level by enhancing drug delivery efficiency. Additionally, cell-specific cytotoxicity (reported earlier by our group) of the nanovehicle itself may potentiate a more effective targeted cell killing. In this paper, we explore the possibility of using gold nanoparticles playing the dual role of an anticancer agent and a carrier of a chemotherapeutic drug. This is demonstrated using vincristine sulfate (VS), salt of an alkaloid often used in the treatment of multiple myeloma (MM), and U266 as a test MM cell line. The drug VS shows the expected G2-M-phase arrest of cells. Notably, bare gold nanoparticle shows arrest of the S phase cells that may be particularly important in case of slow-growing malignancies like MM where most of the cells remain in G1 phase of the cell cycle. The VS conjugated gold retains the activity of both gold nanoparticle and VS leading to a synergistic rise of the apoptotic cell population.

SELECTION OF CITATIONS
SEARCH DETAIL
...