Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PNAS Nexus ; 3(4): pgae100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736471

ABSTRACT

Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high-Tc cuprates and manganites. A key role is played here by the interfacial CuO2 layer whose distinct properties remain to be fully understood. Here, we study with resonant inelastic X-ray scattering the magnon excitations of this interfacial CuO2 layer. In particular, we show that the underlying antiferromagnetic exchange interaction at the interface is strongly suppressed to J≈70 meV, when compared with J≈130 meV for the CuO2 layers away from the interface. Moreover, we observe an anomalous momentum dependence of the intensity of the interfacial magnon mode and show that it suggests that the antiferromagnetic order is accompanied by a particular kind of orbital order that yields a so-called altermagnetic state. Such a 2D altermagnet has recently been predicted to enable new spintronic applications and superconducting proximity effects.

2.
Adv Sci (Weinh) ; 10(23): e2302549, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37259683

ABSTRACT

The industrialization of perovskite solar cells requires adequate materials and processes to make them economically viable and environmentally sustainable. Despite promising results in terms of power conversion efficiency and operational stability, several hole-transport layers currently in use still need to prove their industrial feasibility. This work demonstrates the use of nanocrystalline nickel oxide produced through flash infrared annealing (FIRA), considerably reducing the materials cost, production time, energy, and the amount of solvents required for the hole transport layer. X-ray photoelectron spectroscopy reveals a better conversion to nickel oxide and a higher oxygen-to-nickel ratio for the FIRA films as compared to control annealing methods, resulting in higher device efficiency and operational stability. Planar inverted solar cells produced with triple cation perovskite absorber result in 16.7% power conversion efficiency for 1 cm2 devices, and 15.9% averaged over an area of 17 cm2 .

3.
ACS Nano ; 12(7): 7246-7252, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29874041

ABSTRACT

From a careful analysis of existing data as well as new measurements, we show that the size dependence of the lattice parameters in metal nanoparticles with face-centered cubic (fcc) and body-centered cubic (bcc) symmetries display opposite trends: nanoparticles with fcc structure generally contract with decreasing particle size, while those with bcc structure expand. We present a microscopic explanation for this apparently puzzling behavior based on first-principles simulations. Our results, obtained from a comparison of density functional theory calculations with experimental data, indicate that the nanoparticles are capped by a surface monolayer of oxygen atoms, which is routinely detected by surface-sensitive techniques. The bcc- and fcc-based nanoparticles respond in contrasting fashion to the presence of the oxygen capping layer, and this dictates whether the corresponding lattice parameter would increase or decrease with size reduction. The metal-oxygen bonds at the surface, being shorter and stronger than typical metal-metal bonds, pull the surface metal atoms outward. This outward movement of surface atoms influences the core regions to a larger extent in the relatively open bcc geometry, producing a rather large overall expansion of the cluster, compared to the bulk. In case of fcc clusters, on the other hand, the outward movement of surface metal atoms does not percolate too far inside, resulting in either a smaller net expansion or contraction of the cluster depending on the extent of surface oxygen coverage. Our study therefore provides a convincing physicochemical basis for the correlation between the underlying geometry and the nature of change of the lattice parameters under size reduction.

4.
Nano Lett ; 17(11): 7027-7032, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28981296

ABSTRACT

The ultimate lower size limit for superconducting order to exist is set by the "Anderson criterion"-arising from quantum confinement-that appears to be remarkably accurate and universal. We show that carefully grown, phase-pure, nanocrystalline bcc-Ta remains superconducting (with ordering temperature, TC ≈ 0.9 K) down to sizes 40% below the conventional estimate of the Anderson limit of 4.0 nm. Further, both the TC and the critical magnetic field exhibit an unusual, nonmonotonic size dependence, which we explain in terms of a complex interplay of quantum size effects, surface phonon softening, and lattice expansion. A quantitative estimation of TC within first-principles density functional theory shows that even a moderate lattice expansion allows superconductivity in Ta to persist down to sizes much lower than the conventional Anderson limit, which can be traced to anomalous softening of a phonon due to its coupling with electrons. This appears to indicate the possibility of bypassing the Anderson criterion by suitable crystal engineering and obtaining superconductivity at arbitrarily small sizes, an obviously exciting prospect for futuristic quantum technologies. We take a critical look at how the lattice expansion modifies the Anderson limit, an issue of fundamental interest to the study of nanoscale superconductivity.

6.
Sci Rep ; 5: 11930, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26153048

ABSTRACT

High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 µm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18) W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

7.
Nanotechnology ; 26(23): 235601, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25990259

ABSTRACT

Crystalline hydrogen titanate (H2Ti3O7) nanowires were irradiated with N(+) ions of different energies and fluences. Scanning electron microscopy reveals that at relatively lower fluence the nanowires are bent and start to adhere strongly to one another as well as to the silicon substrate. At higher fluence, the nanowires show large-scale welding and form a network of mainly 'X' and 'Y' junctions. Transmission electron microscopy and Raman scattering studies confirm a high degree of amorphization of the nanowire surface after irradiation. We suggest that while ion-irradiation induced defect formation and dangling bonds may lead to chemical bonding between nanowires, the large scale nano-welding and junction network formation can be ascribed to localized surface melting due to heat spike. Our results demonstrate that low energy ion irradiation with suitable choice of fluence may provide an attractive route to the formation and manipulation of large-area nanowire-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...