Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1332: 211-227, 2021.
Article in English | MEDLINE | ID: mdl-34251646

ABSTRACT

Measuring usual dietary intake in freely living humans is difficult to accomplish. As a part of our recent study, a food frequency questionnaire was completed by healthy adult men and women at days 0 and 90 of the study. Data from the food questionnaire were analyzed with a nutrient analysis program ( www.Harvardsffq.date ). Healthy men and women consumed protein as 19-20% and 17-19% of their total energy intakes, respectively, with animal protein representing about 75 and 70% of their total protein intakes, respectively. The intake of each nutritionally essential amino acid (EAA) by the persons exceeded that recommended for healthy adults with a minimal physical activity. In all individuals, the dietary intake of leucine was the highest, followed by lysine, valine, and isoleucine in descending order, and the ingestion of amino acids that are synthesizable de novo in animal cells (AASAs) was about 20% greater than that of total EAAs. The intake of each AASA met those recommended for healthy adults with a minimal physical activity. Intakes of some AASAs (alanine, arginine, aspartate, glutamate, and glycine) from a typical diet providing 90-110 g food protein/day does not meet the requirements of adults with an intensive physical activity. Within the male or female group, there were not significant differences in the dietary intakes of all amino acids between days 0 and 90 of the study, and this was also true for nearly all other essential nutrients. Our findings will help to improve amino acid nutrition and health in both the general population and exercising individuals.


Subject(s)
Amino Acids , Diet , Adult , Eating , Energy Intake , Female , Humans , Male , Nutrients
2.
Breast Cancer Res ; 21(1): 37, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30845991

ABSTRACT

BACKGROUND: Triple-negative breast cancers (TNBCs), which lack receptors for estrogen, progesterone, and amplification of epidermal growth factor receptor 2, are highly aggressive. Consequently, patients diagnosed with TNBCs have reduced overall and disease-free survival rates compared to patients with other subtypes of breast cancer. TNBCs are characterized by the presence of cancer cells with mesenchymal properties, indicating that the epithelial to mesenchymal transition (EMT) plays a major role in the progression of this disease. The EMT program has also been implicated in chemoresistance, tumor recurrence, and induction of cancer stem cell (CSC) properties. Currently, there are no targeted therapies for TNBC, and hence, it is critical to identify the novel targets to treat TNBC. METHODS: A library of compounds was screened for their ability to inhibit EMT in cells with mesenchymal phenotype as assessed using the previously described Z-cad reporters. Of the several drugs tested, GSK3ß inhibitors were identified as EMT inhibitors. The effects of GSK3ß inhibitors on the properties of TNBC cells with a mesenchymal phenotype were assessed using qRT-PCR, flow cytometry, western blot, mammosphere, and migration and cell viability assays. Publicly available datasets also were analyzed to examine if the expression of GSK3ß correlates with the overall survival of breast cancer patients. RESULTS: We identified a GSK3ß inhibitor, BIO, in a drug screen as one of the most potent inhibitors of EMT. BIO and two other GSK3ß inhibitors, TWS119 and LiCl, also decreased the expression of mesenchymal markers in several different cell lines with a mesenchymal phenotype. Further, inhibition of GSK3ß reduced EMT-related migratory properties of cells with mesenchymal properties. To determine if GSK3ß inhibitors target mesenchymal-like cells by affecting the CSC population, we employed mammosphere assays and profiled the stem cell-related cell surface marker CD44+/24- in cells after exposure to GSK3ß inhibitors. We found that GSK3ß inhibitors indeed decreased the CSC properties of cell types with mesenchymal properties. We treated cells with epithelial and mesenchymal properties with GSK3ß inhibitors and found that GSK3ß inhibitors selectively kill cells with mesenchymal attributes while sparing cells with epithelial properties. We analyzed patient data to identify genes predictive of poor clinical outcome that could serve as novel therapeutic targets for TNBC. The Wnt signaling pathway is critical to EMT, but among the various factors known to be involved in Wnt signaling, only the higher expression of GSK3ß correlated with poorer overall patient survival. CONCLUSIONS: Taken together, our data demonstrate that GSK3ß is a potential target for TNBCs and suggest that GSK3ß inhibitors could serve as selective inhibitors of EMT and CSC properties for the treatment of a subset of aggressive TNBC. GSK3ß inhibitors should be tested for use in combination with standard-of-care drugs in preclinical TNBC models.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Datasets as Topic , Drug Screening Assays, Antitumor , Female , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Lithium Chloride/pharmacology , Lithium Chloride/therapeutic use , Neoplastic Stem Cells/pathology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Survival Analysis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/mortality , Wnt Signaling Pathway
3.
Development ; 145(6)2018 03 14.
Article in English | MEDLINE | ID: mdl-29490985

ABSTRACT

The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function. Here, we show that PER2 has a noncircadian function that is crucial to mammalian mammary gland development. Virgin Per2-deficient mice, Per2-/- , have underdeveloped glands, containing fewer bifurcations and terminal ducts than glands of wild-type mice. Using a transplantation model, we show that these changes are intrinsic to the gland and further identify changes in cell fate commitment. Per2-/- mouse mammary glands have a dual luminal/basal phenotypic character in cells of the ductal epithelium. We identified colocalization of E-cadherin and keratin 14 in luminal cells. Similar results were demonstrated using MCF10A and shPER2 MCF10A human cell lines. Collectively this study reveals a crucial noncircadian function of PER2 in mammalian mammary gland development, validates the Per2-/- model, and describes a potential role for PER2 in breast cancer.


Subject(s)
Mammary Glands, Animal/growth & development , Period Circadian Proteins/metabolism , Animals , Circadian Rhythm/genetics , Epithelial Cells/metabolism , Female , Humans , Immunohistochemistry , Mammary Glands, Animal/metabolism , Mice , Organogenesis , Real-Time Polymerase Chain Reaction
4.
Oncotarget ; 8(39): 65548-65565, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029452

ABSTRACT

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...