Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2023: 1787485, 2023.
Article in English | MEDLINE | ID: mdl-37090194

ABSTRACT

As an omnipresent opportunistic bacterium, Pseudomonas aeruginosa PAO1 is responsible for acute and chronic infection in immunocompromised individuals. Currently, this bacterium is on WHO's red list where new antibiotics are urgently required for the treatment. Finding essential genes and essential hypothetical proteins (EHP) can be crucial in identifying novel druggable targets and therapeutics. This study is aimed at characterizing these EHPs and analyzing subcellular and physiochemical properties, PPI network, nonhomologous analysis against humans, virulence factor and novel drug target prediction, and finally structural analysis of the identified target employing around 42 robust bioinformatics tools/databases, the output of which was evaluated using the ROC analysis. The study discovered 18 EHPs from 336 essential genes, with domain and functional annotation revealing that 50% of these proteins belong to the enzyme category. The majority are cytoplasmic and cytoplasmic membrane proteins, with half being stable proteins subjected to PPIs network analysis. The network contains 261 nodes and 269 edges for 9 proteins of interest, with 11 hubs containing at least three nodes each. Finally, a pipeline builder predicts 7 proteins with novel drug targets, 5 nonhomologous proteins against human proteome, human antitargets, and human gut flora, and 3 virulent proteins. Among these, homology modeling of NP_249450 and NP_251676 was done, and the Ramachandran plot analysis revealed that more than 94% of the residues were in the preferred region. By analyzing functional attributes and virulence characteristics, the findings of this study may facilitate the development of innovative antibacterial drug targets and drugs of Pseudomonas aeruginosa PAO1.


Subject(s)
Pseudomonas aeruginosa , Virulence Factors , Humans , Virulence Factors/genetics , Virulence Factors/metabolism , Proteome/metabolism , Computational Biology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
RSC Adv ; 12(7): 4288-4310, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35425433

ABSTRACT

A novel infectious agent, SARS-CoV-2, is responsible for causing the severe respiratory disease COVID-19 and death in humans. Spike glycoprotein plays a key role in viral particles entering host cells, mediating receptor recognition and membrane fusion, and are considered useful targets for antiviral vaccine candidates. Therefore, computational techniques can be used to design a safe, antigenic, immunogenic, and stable vaccine against this pathogen. Drawing upon the structure of the S glycoprotein, we are trying to develop a potent multi-epitope subunit vaccine against SARS-CoV-2. The vaccine was designed based on cytotoxic T-lymphocyte and helper T-lymphocyte epitopes with an N-terminal adjuvant via conducting immune filters and an extensive immunoinformatic investigation. The safety and immunogenicity of the designed vaccine were further evaluated via using various physicochemical, allergenic, and antigenic characteristics. Vaccine-target (toll-like receptors: TLR2 and TLR4) interactions, binding affinities, and dynamical stabilities were inspected through molecular docking and molecular dynamic (MD) simulation methods. Moreover, MD simulations for dimeric TLRs/vaccine in the membrane-aqueous environment were performed to understand the differential domain organization of TLRs/vaccine. Further, dynamical behaviors of vaccine/TLR systems were inspected via identifying the key residues (named HUB nodes) that control interaction stability and provide a clear molecular mechanism. The obtained results from molecular docking and MD simulation revealed a strong and stable interaction between vaccine and TLRs. The vaccine's ability to stimulate the immune response was assessed by using computational immune simulation. This predicted a significant level of cytotoxic T cell and helper T cell activation, as well as IgG, interleukin 2, and interferon-gamma production. This study shows that the designed vaccine is structurally and dynamically stable and can trigger an effective immune response against viral infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...