Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(9): 11391-11402, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847552

ABSTRACT

Discovery of microorganisms and their relevant surface peptides that specifically bind to target materials of interest can be achieved through iterative biopanning-based screening of cellular libraries having high diversity. Recently, microfluidics-based biopanning methods have been developed and exploited to overcome the limitations of conventional methods where controlling the shear stress applied to remove cells that do not bind or only weakly bind to target surfaces is difficult and the overall experimental procedure is labor-intensive. Despite the advantages of such microfluidic methods and successful demonstration of their utility, these methods still require several rounds of iterative biopanning. In this work, a magnetophoretic microfluidic biopanning platform was developed to isolate microorganisms that bind to target materials of interest, which is gold in this case. To achieve this, gold-coated magnetic nanobeads, which only attached to microorganisms that exhibit high affinity to gold, were used. The platform was first utilized to screen a bacterial peptide display library, where only the cells with surface peptides that specifically bind to gold could be isolated by the high-gradient magnetic field generated within the microchannel, resulting in enrichment and isolation of many isolates with high affinity and high specificity toward gold even after only a single round of separation. The amino acid profile of the resulting isolates was analyzed to provide a better understanding of the distinctive attributes of peptides that contribute to their specific material-binding capabilities. Next, the microfluidic system was utilized to screen soil microbes, a rich source of extremely diverse microorganisms, successfully isolating many naturally occurring microorganisms that show strong and specific binding to gold. The results show that the developed microfluidic platform is a powerful screening tool for identifying microorganisms that specifically bind to a target material surface of interest, which can greatly accelerate the development of new peptide-driven biological materials and hybrid organic-inorganic materials.


Subject(s)
Microfluidics , Peptide Library , Microfluidics/methods , Peptides/chemistry , Magnetics , Gold
2.
Colloids Surf B Biointerfaces ; 203: 111730, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33853002

ABSTRACT

Biocompatible approaches to labeling bacteria with fluorescent nanoparticles are essential in order to create living bacterial bioconjugates for imaging, biosensors, medicine, and other applications. Herein we report the direct conjugation of carboxyl quantum dots (QDs) with E. coli outer membrane via surface-displayed binding peptides. The histidine-containing peptide H6G9 was displayed at the N-terminus of membrane-embedded enhanced circularly permuted outer membrane protein X (eCPX) scaffold, which was expressed upon chemical induction. The presence of the binding peptide creates an environment distinct from the negatively charged E. coli surface and provides strong binding affinity to carboxyl quantum dots (QDs). Transmission electron microscopy (TEM) analysis of E. coli-QD bioconjugates revealed high loading densities of these QDs immobilized on the cell surface, even when adding a very low concentration (10 µg/mL) of QDs in order to reduce the cell exposure. These hybrid cells strongly fluoresce with each of the distinct colors of loaded QDs with different emission wavelengths, which can be easily visualized by fluorescence microscopy or differentiated using flow cytometry. Importantly, the E. coli-QD bioconjugates were highly viable and maintained the ability to grow and divide. This study demonstrates a simple, direct, and highly efficient method for labelling bacteria with QDs, without significantly compromising the vitality of the cells.


Subject(s)
Quantum Dots , Escherichia coli/genetics , Histidine , Microscopy, Fluorescence , Peptides
3.
BMC Biotechnol ; 19(1): 100, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31864334

ABSTRACT

BACKGROUND: Bacterial surface display libraries are a popular tool for novel ligand discovery due to their ease of manipulation and rapid growth rates. These libraries typically express a scaffold protein embedded within the outer membrane with a short, surface-exposed peptide that is either terminal or is incorporated into an outer loop, and can therefore interact with and bind to substrates of interest. RESULTS: In this study, we employed a novel bacterial peptide display library which incorporates short 15-mer peptides on the surface of E. coli, co-expressed with the inducible red fluorescent protein DsRed in the cytosol, to investigate population diversity over two rounds of biopanning. The naive library was used in panning trials to select for binding affinity against 3D printing plastic coupons made from polylactic acid (PLA). Resulting libraries were then deep-sequenced using next generation sequencing (NGS) to investigate selection and diversity. CONCLUSIONS: We demonstrated enrichment for PLA binding versus a sapphire control surface, analyzed population composition, and compared sorting rounds using a binding assay and fluorescence microscopy. The capability to produce and describe display libraries through NGS across rounds of selection allows a deeper understanding of population dynamics that can be better directed towards peptide discovery.


Subject(s)
Bioprospecting/methods , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing/methods , Peptide Library , Peptides/genetics , Escherichia coli/chemistry , Escherichia coli/metabolism , Peptides/metabolism
4.
Langmuir ; 34(20): 5837-5848, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29692178

ABSTRACT

In this study, we investigated the preparation of living bacteria-nanoparticle hybrids mediated by surface-displayed peptides. The assembly of metallic nanoparticles on living bacteria has been achieved under mild conditions utilizing metal-peptide interactions, whereas the viability of the bacterial cells was greatly preserved. Escherichia coli was engineered with inducible gene circuits to control the display of peptides with desired sequences. Several designed peptide sequences as well as known gold-binding peptides were expressed on the cell surface using enhanced circularly permuted outer membrane protein X (eCPX) scaffolds. Driven by metal-peptide affinity, "biofriendly" citrate-stabilized gold nanoparticles were self-assembled onto the surface of bacteria with displayed peptides, which required overcoming the repulsive force between negatively charged nanoparticles and negatively charged cells. The bacteria/Au nanoparticle hybrids were highly viable and maintained the ability to grow and divide, which is a crucial step toward the creation of living material systems. Further activity and preservation of the bacterial hybrid assembly was demonstrated. The method described herein enables the conjugation of bacterial surfaces with diverse metal-rich nanoparticles in an inducible, and therefore easily controlled, manner. The expressed peptide sequences can be easily modified to alter the binding affinity and specificity for a wide variety of materials to form on-demand, high-density living biohybrids.


Subject(s)
Metal Nanoparticles/chemistry , Peptides/metabolism , Amino Acid Sequence , Escherichia coli , Gold/chemistry , Peptides/chemistry
5.
J Vis Exp ; (130)2017 12 06.
Article in English | MEDLINE | ID: mdl-29286465

ABSTRACT

Biopanning bacterial display libraries is a proven technique for peptide affinity reagent discovery for recognition of both biotic and abiotic targets. Peptide affinity reagents can be used for similar applications to antibodies, including sensing and therapeutics, but are more robust and able to perform in more extreme environments. Specific enrichment of peptide capture agents to a protein target of interest is enhanced using semi-automated sorting methods which improve binding and wash steps and therefore decrease the occurrence of false positive binders. A semi-automated sorting method is described herein for use with a commercial automated magnetic-activated cell sorting device with an unconstrained bacterial display sorting library expressing random 15-mer peptides. With slight modifications, these methods are extendable to other automated devices, other sorting libraries, and other organisms. A primary goal of this work is to provide a comprehensive methodology and expound the thought process applied in analyzing and minimizing the resulting pool of candidates. These techniques include analysis of on-cell binding using fluorescence-activated cell sorting (FACS), to assess affinity and specificity during sorting and in comparing individual candidates, and the analysis of peptide sequences to identify trends and consensus sequences for understanding and potentially improving the affinity to and specificity for the target of interest.


Subject(s)
Biosensing Techniques/methods , Peptide Library , Peptides/chemistry
6.
Biopolymers ; 108(2)2017 Mar.
Article in English | MEDLINE | ID: mdl-27539157

ABSTRACT

We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T1/2 ) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives.


Subject(s)
Click Chemistry/methods , Peptide Library , Peptides/chemistry , Vascular Endothelial Growth Factor A/chemistry , Amino Acid Sequence , Animals , Antibodies/administration & dosage , Antibodies/chemistry , Antibodies/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Calorimetry, Differential Scanning , Catalysis , Chromatography, High Pressure Liquid , Circular Dichroism , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Female , HT29 Cells , Humans , Injections, Intraperitoneal , Injections, Intravenous , Ligands , Male , Mass Spectrometry , Mice , Microsomes, Liver/metabolism , Peptides/metabolism , Peptides/pharmacokinetics , Protein Binding , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/metabolism
7.
Molecules ; 21(11)2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27834872

ABSTRACT

Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide-protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates.


Subject(s)
Abrin/antagonists & inhibitors , Abrin/chemistry , Molecular Docking Simulation , Peptides/chemistry , Ricin/antagonists & inhibitors , Ricin/chemistry , Structural Homology, Protein
8.
Methods Mol Biol ; 1376: 213-27, 2016.
Article in English | MEDLINE | ID: mdl-26552687

ABSTRACT

Phosphoinositides play critical roles in the transduction of extracellular signals through the plasma membrane and also in endomembrane events important for vesicle trafficking and organelle function (Di Paolo and De Camilli, Nature 443(7112):651-657, 2006). The response triggered by these lipids is heavily dependent on the microenvironment in which they are found. HPLC analysis of labeled phosphoinositides allows quantification of the levels of each phosphoinositide species relative to their precursor, phosphatidylinositol. When combined with subcellular fractionation techniques, this strategy allows measurement of the relative phosphoinositide composition of each membrane fraction or organelle and determination of the microenvironment in which each species is enriched. Here, we describe the steps to separate and quantify total or localized phosphoinositides from cultured cells.


Subject(s)
Cell Fractionation/methods , Cell Membrane , Phosphatidylinositols , Cell Membrane/chemistry , Chromatography, High Pressure Liquid , Phosphatidylinositols/chemistry , Staining and Labeling , Subcellular Fractions , Tritium/chemistry
9.
Angew Chem Int Ed Engl ; 54(45): 13219-24, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26377818

ABSTRACT

We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.


Subject(s)
Drug Design , Epitopes/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Proteins/chemistry , Ligands , Molecular Weight , Peptides, Cyclic/chemistry , Proteins/antagonists & inhibitors
10.
Sci Signal ; 7(350): ra104, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25372051

ABSTRACT

Phosphatidylinositol-5-phosphate 4-kinases (PIP4ks) are a family of lipid kinases that specifically use phosphatidylinositol 5-monophosphate (PI-5-P) as a substrate to synthesize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Suppression of PIP4k function in Drosophila results in smaller cells and reduced target of rapamycin complex 1 (TORC1) signaling. We showed that the γ isoform of PIP4k stimulated signaling through mammalian TORC1 (mTORC1). Knockdown of PIP4kγ reduced cell mass in cells in which mTORC1 is constitutively activated by Tsc2 deficiency. In Tsc2 null cells, mTORC1 activation was partially independent of amino acids or glucose and glutamine. PIP4kγ knockdown inhibited the nutrient-independent activation of mTORC1 in Tsc2 knockdown cells and reduced basal mTORC1 signaling in wild-type cells. PIP4kγ was phosphorylated by mTORC1 and associated with the complex. Phosphorylated PIP4kγ was enriched in light microsomal vesicles, whereas the unphosphorylated form was enriched in heavy microsomal vesicles associated with the Golgi. Furthermore, basal mTORC1 signaling was enhanced by overexpression of unphosphorylated wild-type PIP4kγ or a phosphorylation-defective mutant and decreased by overexpression of a phosphorylation-mimetic mutant. Together, these results demonstrate that PIP4kγ and mTORC1 interact in a self-regulated feedback loop to maintain low and tightly regulated mTORC1 activation during starvation.


Subject(s)
Multiprotein Complexes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cytoplasm/metabolism , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Mutation , Phosphorylation , Signal Transduction , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
11.
J Mol Recognit ; 27(12): 739-45, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319622

ABSTRACT

Bacterial peptide display libraries enable the rapid and efficient selection of peptides that have high affinity and selectivity toward their targets. Using a 15-mer random library on the outer surface of Escherichia coli (E.coli), high-affinity peptides were selected against a staphylococcal enterotoxin B (SEB) protein after four rounds of biopanning. On-cell screening analysis of affinity and specificity were measured by flow cytometry and directly compared to the synthetic peptide, off-cell, using peptide-ELISA. DNA sequencing of the positive clones after four rounds of microfluidic magnetic sorting (MMS) revealed a common consensus sequence of (S/T)CH(Y/F)W for the SEB-binding peptides R338, R418, and R445. The consensus sequence in these bacterial display peptides has similar amino acid characteristics with SEB peptide sequences isolated from phage display. The Kd measured by peptide-ELISA off-cell was 2.4 nM for R418 and 3.0 nM for R445. The bacterial peptide display methodology using the semiautomated MMS resulted in the discovery of selective peptides with affinity for a food safety and defense threat. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Enterotoxins/metabolism , Magnetic Phenomena , Microfluidics/methods , Peptide Library , Peptides/analysis , Amino Acid Sequence , Enzyme-Linked Immunosorbent Assay , Fluorescence , Molecular Sequence Data , Peptides/chemistry , Protein Binding
12.
Adv Mater ; 25(33): 4585-91, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23868808

ABSTRACT

The first-ever peptide biomaterial discovery using an unconstrained engineered bacterial display technology is reported. Using this approach, we have developed genetically engineered peptide binders for a bulk aluminum alloy and use molecular dynamics simulation of peptide conformational fluctuations to demonstrate sequence-dependent, structure-function relationships for metal and metal oxide interactions.


Subject(s)
Alloys/chemistry , Aluminum/chemistry , Escherichia coli/genetics , Genetic Engineering , Peptide Library , Peptides/genetics , Peptides/chemistry , Surface Properties
13.
Biotechniques ; 52(2): 95-102, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22313407

ABSTRACT

Peptide reagents can serve as alternatives or replacements to antibodies in sensing or diagnostic applications. The passive adsorption of peptides onto polystyrene surfaces can limit the target binding capability, especially for short, positively charged, or hydrophobic sequences. In this report, we show that fusing a peptide with a previously characterized 12-amino acid polystyrene binding sequence (PS-tag) improves overall peptide solubility and enzyme-linked immunosorbent assay (ELISA) results using the peptide as a capture agent. Specific improvements for protective antigen (PA; Bacillus anthracis) protein binding peptides selected from bacterial surface display were compared with native or biotinylated peptides. The PS-tag was added to either peptide terminus, using a (Gly)(4) spacer, and comparable binding affinities were obtained. Fusion with the PS-tag did not have any negative impact on peptide secondary structure as measured by circular dichroism. The addition of the PS-tag provides a convenient method to utilize peptide reagents from peptide display libraries as capture agents in an ELISA format without the need for a biotin tag or concerns about passive adsorption of critical residues for target capture.


Subject(s)
Peptide Fragments/genetics , Peptide Fragments/metabolism , Polystyrenes/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Enzyme-Linked Immunosorbent Assay/methods , Molecular Sequence Data , Protein Binding/genetics , Sequence Analysis, Protein/methods , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...