Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 7: 216, 2006 Aug 23.
Article in English | MEDLINE | ID: mdl-16928277

ABSTRACT

BACKGROUND: Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs) or large scale (CGH array, FISH) methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. RESULTS: All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. CONCLUSION: Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.


Subject(s)
Bias , Genomics/methods , Nucleic Acid Amplification Techniques , Sequence Analysis, DNA/methods , Campylobacter jejuni/genetics , Chromosomes, Bacterial , DNA Probes , Genome, Bacterial , Genomics/statistics & numerical data , Halobacterium/genetics , Statistics, Nonparametric
2.
Nature ; 437(7057): 376-80, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16056220

ABSTRACT

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.


Subject(s)
Genome, Bacterial , Genomics/instrumentation , Microchemistry/instrumentation , Mycoplasma genitalium/genetics , Sequence Analysis, DNA/instrumentation , Electrophoresis, Capillary , Emulsions , Fiber Optic Technology , Genomics/economics , Microchemistry/economics , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA/economics , Time Factors
3.
Science ; 309(5738): 1210-5, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-15994378

ABSTRACT

The structure of a synaptic intermediate of the site-specific recombinase gammadelta resolvase covalently linked through Ser10 to two cleaved duplex DNAs has been determined at 3.4 angstrom resolution. This resolvase, activated for recombination by mutations, forms a tetramer whose structure is substantially changed from that of a presynaptic complex between dimeric resolvase and the cleavage site DNA. Because the two cleaved DNA duplexes that are to be recombined lie on opposite sides of the core tetramer, large movements of both protein and DNA are required to achieve strand exchange. The two dimers linked to the DNAs that are to be recombined are held together by a flat interface. This may allow a 180 degrees rotation of one dimer relative to the other in order to reposition the DNA duplexes for strand exchange.


Subject(s)
DNA/chemistry , DNA/metabolism , Transposon Resolvases/chemistry , Amino Acid Substitution , Binding Sites , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Dimerization , Models, Molecular , Mutation , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Recombination, Genetic , Transposon Resolvases/genetics , Transposon Resolvases/metabolism
4.
Electrophoresis ; 24(21): 3769-77, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14613204

ABSTRACT

We demonstrate successful, simultaneous polymerase chain reaction (PCR) amplification of up to 300 000 discrete reactions in a novel platform, the PicoTiterPlate. In addition to elevated throughput, the PicoTiterPlate based amplifications (PTPCR) can be performed in extremely small volumes: individual reactions volumes are as low as 39.5 pL, with a total 15.3 microL reaction volume for the entire PicoTiterPlate. The bulk PTPCR product can be recovered and assayed with real-time PCR, or discrete PTPCR products can be driven to solid supports, enabling downstream applications such as translation/transcription or sequencing.


Subject(s)
DNA/chemistry , Miniaturization/instrumentation , Polymerase Chain Reaction/methods , Base Sequence , DNA/genetics , DNA Primers , Fiber Optic Technology , Microscopy, Electron, Scanning , Miniaturization/methods , Nucleic Acid Hybridization/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...