Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Science ; 380(6652): 1349-1356, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37384702

ABSTRACT

Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.


Subject(s)
Chagas Disease , Topoisomerase II Inhibitors , Triazoles , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Mice , Chagas Disease/drug therapy , Cryoelectron Microscopy , DNA Topoisomerases, Type II/metabolism , Trypanosoma/drug effects , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/therapeutic use , Trypanosomiasis, African/drug therapy , Drug Evaluation, Preclinical
2.
J Med Chem ; 65(17): 11776-11787, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35993839

ABSTRACT

Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.


Subject(s)
Quinolines , Trypanosoma , Trypanosomiasis, African , Animals , Cryoelectron Microscopy , Disease Models, Animal , Humans , Mice , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
3.
J Med Chem ; 65(5): 3798-3813, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35229610

ABSTRACT

A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 µM) and achieves "artemisinin-like" kill kinetics in vitro with a parasite clearance time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Folic Acid Antagonists/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Mice , Mice, SCID , Plasmodium falciparum
4.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536278

ABSTRACT

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Subject(s)
Dengue Virus , Dengue , Animals , Antiviral Agents/therapeutic use , Dengue/drug therapy , Dogs , Mice , Models, Animal , Rats , Serogroup
5.
Bioorg Med Chem Lett ; 29(3): 435-440, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30455146

ABSTRACT

A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.


Subject(s)
Amides/pharmacology , Drug Discovery , Pyrazoles/pharmacology , Receptors, CCR1/antagonists & inhibitors , Amides/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrazoles/chemistry , Receptors, CCR1/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 19(8): 2206-10, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19307114

ABSTRACT

We have been exploring the potential of 5-HT(2B) antagonists as a therapy for chronic heart failure. To assess the potential of this therapeutic approach, we sought compounds possessing the following attributes: (a) potent and selective antagonism of the 5-HT(2B) receptor, (b) low impact of serum proteins on potency, and (c) desirable pharmacokinetic properties. This Letter describes our investigation of a biphenyl benzimidazole class of compounds that resulted in 5-HT(2B) antagonists possessing the above attributes. Improving potency in a human serum albumin shift assay proved to be the most significant SAR discovery.


Subject(s)
Receptor, Serotonin, 5-HT2B/metabolism , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacokinetics , Animals , Binding Sites , Male , Quantitative Structure-Activity Relationship , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Serotonin, 5-HT2B/chemistry , Serotonin Antagonists/classification
7.
Bioorg Med Chem Lett ; 17(13): 3660-5, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17499505

ABSTRACT

Benzimidazole 1 was identified as a selective inhibitor of ITK by high throughput screening. Hit-to-lead studies defined the SAR at all three substituents. Reversing the amide linkage at C6 led to 16, with a fivefold improvement of potency. This enhancement is rationalized by the conformational preference of the substituent. A model for the binding of the benzimidazoles to the ATP-binding site of ITK is proposed.


Subject(s)
Benzimidazoles/chemistry , Chemistry, Pharmaceutical/methods , Protein Kinase Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Benzimidazoles/chemical synthesis , Binding Sites , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Models, Chemical , Protein Binding , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 16(24): 6316-20, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17010605

ABSTRACT

A new class of benzimidazolone p38 MAP kinase inhibitors was discovered through high-throughput screening. X-ray crystallographic data of the lead molecule with p38 were used to design analogues with improved binding affinity and potency in a cell assay of LPS-induced TNFalpha production. Herein, we report the SAR of this new class of p38 inhibitors.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/chemistry , Benzimidazoles/chemical synthesis , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Models, Molecular , Molecular Conformation , Protein Conformation , Structure-Activity Relationship
9.
J Med Chem ; 49(10): 2898-908, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16686533

ABSTRACT

High-throughput screening is routinely employed as a method for the identification of novel hit structures. Large numbers of active compounds are typically procured in this way and must undergo a rigorous validation process. This process is described in detail for a collection of screening hits identified as inhibitors of IkappaB kinase-beta (IKKbeta), a key regulatory enzyme in the nuclear factor-kappaB (NF-kappaB) pathway. From these studies, a promising hit series was selected. Subsequent lead generation activities included the development of a pharmacophore hypothesis and structure-activity relationship (SAR) for the hit series. This led to the exploration of related scaffolds offering additional opportunities, and the various structural classes were comparatively evaluated for enzyme inhibition, selectivity, and drug-like properties. A novel lead series of thienopyridines was thereby established, and this series advanced into lead optimization for further development.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/chemistry , Models, Molecular , Pyridines/chemical synthesis , Oxazoles/chemical synthesis , Oxazoles/chemistry , Pyridines/chemistry , Structure-Activity Relationship
10.
Bioorg Med Chem ; 14(8): 2725-46, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16377201

ABSTRACT

A series of prolyl-1-piperazinylacetic acid and prolyl-4-piperidinylacetic acid derivatives were synthesized and evaluated for their activity as VLA-4 antagonists. Of 22 compounds synthesized, 19 compounds showed potent activity with low nanomolar IC50 values. In addition, the representative compounds 11o and 11p with a hydroxy group in the pyrrolidine ring showed moderate plasma clearance in rats (11o, 30 ml/min/kg and 11p, 21 ml/min/kg) and in dogs (11o, 12 ml/min/kg and 11p, 9 ml/min/kg).


Subject(s)
Acetates/chemical synthesis , Integrin alpha4beta1/antagonists & inhibitors , Piperazines/chemical synthesis , Piperidines/chemical synthesis , Proline/analogs & derivatives , Acetates/pharmacokinetics , Acetates/pharmacology , Animals , Dogs , Magnetic Resonance Spectroscopy , Male , Piperazines/pharmacokinetics , Piperazines/pharmacology , Piperidines/pharmacokinetics , Piperidines/pharmacology , Proline/chemical synthesis , Proline/pharmacokinetics , Proline/pharmacology , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Fast Atom Bombardment
11.
Bioorg Med Chem Lett ; 15(1): 41-5, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582407

ABSTRACT

An investigation into the structure-activity relationship of a lead compound, prolyl-5-aminopentanoic acid 4, led to the identification of a novel series of 4-piperidinylacetic acid, 1-piperazinylacetic acid, and 4-aminobenzoic acid derivatives as potent VLA-4 antagonists with low nanomolar IC(50) values. A representative compound morpholinyl-4-piperidinylacetic acid derivative (13d: IC(50)=4.4 nM) showed efficacy in the Ascaris-antigen sensitized murine airway inflammation model by oral administration.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Morpholines/pharmacology , Piperidines/pharmacology , Administration, Oral , Animals , Asthma/etiology , Asthma/metabolism , Mice , Morpholines/administration & dosage , Morpholines/chemistry , Piperidines/administration & dosage , Piperidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...