Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164526, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37257609

ABSTRACT

The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.


Subject(s)
Animal Feed , Triticum , Animals , Triticum/chemistry , Animal Feed/analysis , Methane/metabolism , Nitrogen/analysis , Digestion , Chickens , Manure , Rumen , Fermentation , Diet
2.
Bioresour Technol ; 360: 127576, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792329

ABSTRACT

Ozone is a powerful oxidative gas widely used as a green pretreatment to enhance the delignification of cereal straws. Urea pretreatment can enrich straws with nitrogen to make them more accessible to anaerobic microorganisms. This study aimed to evaluate the effect of ozone-urea pretreatment on the digestibility of wheat straw (i.e., physicochemical, nitrogen enrichment, gas production, nutritional value, and surface chemistry). The results of ozone-urea pretreatment were compared with non-pretreated, ozone-pretreated, and urea-pretreated samples. This pretreatment method outperformed the other methods in terms of digestibility metrics. The ozone-urea pretreatment resulted in a 50% reduction in lignin, a 4.2 times increase in crude protein, a 22.5% increase in bonded organic-N, a 2 times increase in 24 h-gas production, and a 43.67% increase in total digestible nutrients compared to the non-pretreated sample. Based on the total digestible nutrients index, one-tonne ozone-urea-pretreated straw would be 70.6 USD cheaper than the non-pretreated one.


Subject(s)
Ozone , Lignin/chemistry , Nitrogen/metabolism , Ozone/chemistry , Triticum/chemistry , Urea/metabolism , Urea/pharmacology
3.
Environ Pollut ; 285: 117412, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34051566

ABSTRACT

The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.


Subject(s)
Composting , Fertilizers , Agriculture , Environment , Fertilizers/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...