Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(2): 367-71, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25466710

ABSTRACT

A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.


Subject(s)
Fluorine/chemistry , Fluorine/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Structure-Activity Relationship
2.
J Med Chem ; 58(1): 512-6, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24712864

ABSTRACT

Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Isoquinolines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Drug Design , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism
3.
J Med Chem ; 54(7): 2255-65, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21375264

ABSTRACT

The development of a new series of p38α inhibitors resulted in the identification of two clinical candidates, one of which was advanced into a phase 2 clinical study for rheumatoid arthritis. The original lead, an lck inhibitor that also potently inhibited p38α, was a screening hit from our kinase inhibitor library. This manuscript describes the optimization of the lead to p38-selective examples with good pharmacokinetic properties.


Subject(s)
Drug Discovery/methods , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pyridones/pharmacology , Pyridones/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Administration, Oral , Arthritis, Rheumatoid/drug therapy , Biological Availability , Cell Line , Clinical Trials as Topic , Humans , Mitogen-Activated Protein Kinase 14/chemistry , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyridones/administration & dosage , Pyridones/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship , Substrate Specificity
4.
J Pharm Biomed Anal ; 53(3): 710-6, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20439144

ABSTRACT

RG7128 is a di-ester prodrug of a cytidine analog for the treatment of hepatitis C virus (HCV) infection. The structures of nine low level impurities (0.05-0.10%) in RG7128 drug substance were elucidated. The majority of the impurities were formed during the synthesis of the prodrug from the parent drug. Structural elucidations of the impurities were achieved either by enrichment of the impurities using preparative chromatography followed by spectroscopic techniques or by confirmation with a reference sample. Heart-cut and recycle chromatographic techniques were applied to purify closely eluting isomers of RG7128.


Subject(s)
Antiviral Agents/analysis , Deoxycytidine/analogs & derivatives , Drug Contamination , Hepatitis C/drug therapy , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Chromatography, High Pressure Liquid , Deoxycytidine/analysis , Esters/analysis , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
5.
ChemMedChem ; 4(1): 88-99, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19006142

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are part of the preferred treatment regimens for individuals infected with HIV. These NNRTI-based regimens are efficacious, but the most popular NNRTIs have a low genetic barrier to resistance and have been associated with adverse events. There is therefore still a need for efficacious antiviral medicines that facilitate patient adherence and allow durable suppression of viral replication. As part of an extensive program targeted toward the discovery of NNRTIs that have favorable pharmacokinetic properties, good potency against NNRTI-resistant viruses, and a high genetic barrier to drug resistance, we focused on the optimization of a series of diaryl ether NNRTIs. In the course of this effort, we employed molecular modeling to design a new set of NNRTIs that that are active against wild-type HIV and key NNRTI-resistant mutant viruses. The structure-activity relationships observed in this series of compounds provide insight into the structural features required for NNRTIs that inhibit the replication of a wide range of mutant viruses. Selected compounds have promising pharmacokinetic profiles.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/chemistry , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Computer Simulation , Dogs , Drug Design , Drug Resistance, Viral/genetics , HIV/genetics , HIV Reverse Transcriptase/antagonists & inhibitors , Inhibitory Concentration 50 , Models, Molecular , Mutation , Phenyl Ethers/pharmacokinetics , Rats , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
6.
Drug Dev Ind Pharm ; 34(7): 683-91, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18612909

ABSTRACT

The nucleoside analog R1479 is a potent and highly selective inhibitor of NS5b-directed hepatitis C virus (HCV) RNA polymerase in vitro. Because of its limited permeability, lipophilic prodrugs of R1479 were screened. Selection of the prodrug involved optimization of solubility, permeability, and stability parameters. R1626 has dissociation constant, intrinsic solubility, log partition coefficient (n-octanol water), and Caco-2 permeability of 3.62, 0.19 mg/mL, 2.45, and 14.95 x 10(-6) cm/s, respectively. The hydrolysis of the prodrug is significantly faster in the Caco-2 experiments than in hydrolytic experiments, suggesting that the hydrolysis is catalyzed by enzymes in the cellular membrane. Using GastroPlus, the physical properties of R1626 successfully predict the dose dependence of the pharmacokinetics in humans previously studied. The program predicts that if the particle size of R1626 is less than 25 microm, it will be well absorbed. Prodrugs with a solubility of greater than 100 microg/mL and permeability in the Caco-2 assay greater than 3 x 10(-6) cm/s are expected to achieve a high fraction absorbed.


Subject(s)
Antiviral Agents/pharmacokinetics , Cytidine/analogs & derivatives , Nucleosides/pharmacokinetics , Prodrugs/pharmacokinetics , Biological Availability , Caco-2 Cells , Cytidine/pharmacokinetics , DNA-Directed RNA Polymerases/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Stability , Hepacivirus/drug effects , Humans , Hydrolysis , Nucleosides/administration & dosage , Particle Size , Permeability , Prodrugs/administration & dosage , Solubility , Viral Nonstructural Proteins/antagonists & inhibitors
7.
Bioorg Med Chem Lett ; 17(9): 2570-6, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17317178

ABSTRACT

A series of 4'-substituted ribonucleoside derivatives has been prepared and evaluated for inhibition of hepatitis C virus (HCV) RNA replication in cell culture. The most potent and non-cytotoxic derivative was compound 28 (4'-azidocytidine, R1479) with an IC(50) of 1.28 microM in the HCV replicon system. The triphosphate of compound 28 was prepared and shown to be an inhibitor of RNA synthesis mediated by NS5B (IC(50)=320 nM), the RNA polymerase encoded by HCV. Data on related analogues have been used to generate some preliminary requirements for activity within this series of nucleosides.


Subject(s)
Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , Cytidine/analogs & derivatives , Hepacivirus/genetics , Ribonucleosides/chemistry , Virus Replication/drug effects , Cytidine/pharmacology , Drug Design , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Nucleosides/chemistry , RNA/chemistry , Uridine
8.
J Biol Chem ; 281(7): 3793-9, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16316989

ABSTRACT

Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4'-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC(50) = 1.28 microM) with similar potency compared with 2'-C-methylcytidine (IC(50) = 1.13 microM). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mM. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5'-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a K(i) of 40 nM. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3'-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3'-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2'-C-MeATP and other 2'-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.


Subject(s)
Antiviral Agents/pharmacology , Cytidine/analogs & derivatives , Hepacivirus/drug effects , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Cell Line , Cytidine/pharmacology , Hepacivirus/physiology , Humans
9.
Bioorg Med Chem Lett ; 13(22): 3951-4, 2003 Nov 17.
Article in English | MEDLINE | ID: mdl-14592482

ABSTRACT

A novel series of TNF inhibitors was identified based on the screening of existing MMP inhibitor libraries. Further SAR optimization led to the discovery of a novel lead compound. Its synthesis, efficacy in experimental animal models, and pharmacokinetic data are discussed.


Subject(s)
Antirheumatic Agents/chemical synthesis , Arthritis, Rheumatoid/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Disease Models, Animal , Drug Design , Humans , Mice , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...