Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5965, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045854

ABSTRACT

Beyond natural enzymes, the artificially synthesized nanozymes have attracted a significant interest as it can overcome the limitations of the former. Here, we report synthesis of shape controlled nanozymes showing proteolytic activity using Carica papaya L. (papaya) latex. The nanozymes synthesized under optimized reaction conditions exhibited sharp SPR peak around 550 nm with high abundance (45.85%) of prism shaped particles. FTIR analysis and coagulation test indicated the presence of papaya latex enzymes as capping agents over the gold nanoprisms. The milk clot assay and the inhibition test with egg white confirmed the proteolytic activity of the nanozymes and the presence of cysteine protease on it, respectively. The nanozymes were found to be biocompatible and did not elicit any toxic response in both in-vitro and in-vivo study. Based on our findings, we envisage that these biocompatible, shape-specific nanozymes can have potential theragnostic applications.


Subject(s)
Carica , Cysteine Proteases , Latex , Carica/physiology , Gold , Peptide Hydrolases , Vegetables
2.
Vet World ; 10(5): 493-497, 2017 May.
Article in English | MEDLINE | ID: mdl-28620251

ABSTRACT

AIM: Aim of the study was to evaluate the effect of isoflurane anesthesia on physiological parameters, assessment of anesthetic qualities, and economy of use of isoflurane in domestic chickens (Gallus domesticus). MATERIALS AND METHODS: In this study, 18 apparently healthy adult domestic chickens were selected randomly and divided into three groups. The birds were anesthetized by masked induction with isoflurane at a dose rate of 3.5%, 4%, and 5% and were maintained with 1.5%, 2%, and 2.5% isoflurane with oxygen by endotracheal intubation in Groups I, II, and III, respectively. Physiological parameters, viz., cloacal temperature, heart rate, and respiration rate were recorded at 0, 5, 10, 20, 30, 40, 50, and 60 min. The quality of anesthesia was assessed on the basis of induction time, induction behavior, quality of sedation, production of analgesia, degree of muscle relaxation, palpebral reflex, recovery time, and recovery behavior. The economy of anesthesia was calculated in terms of quantity of isoflurane utilized during 60 min of study. Statistical analysis was performed by analysis of variance, Duncan's multiple range tests. RESULTS: There was significant decrease (p<0.01) in physiological parameters such as in cloacal temperature, heart rate and respiration rate in the birds of all the groups from 0 to 60 min. The induction time was 5.83±0.33, 2.37±0.18, and 0.87±0.15 min, respectively, in Groups I, II, and III. Induction behavior was smooth in Group III, whereas mildly stormy in Group II and I. Quality of sedation was excellent in Group III, better in Group II as compared to Group I. Analgesia was moderate in Group III whereas poor in Group II and I. Degree of muscle relaxation was excellent in Group III, whereas good in Group I and II. Palpebral reflexes were absent in all the groups. Recovery time was 15.33±0.84, 18.83±0.94, and 26.50±0.85 in Groups I, II, and III respectively. Recovery behavior was smooth in birds of all the groups. The cost of the anesthesia was 158.22±1.04, 194.27±0.66, and 236.84±0.60 Indian National Rupee in Groups I, II, and III, respectively. Quantity of anesthesia utilized in each group was 7.62±0.05, 9.35±0.03, and 11.41±0.03 ml in Groups I, II, and III, respectively. CONCLUSION: The use of isoflurane at different concentration produces different level of physiological changes, quality of anesthesia and economy without causing any deleterious effect on the birds. The physiological parameters observed in this study can serve as reference values for the wild and endangered birds.

3.
Biomed Mater ; 12(4): 045025, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28632137

ABSTRACT

The present study describes the fabrication of polyaniline-silk fibroin (PASF) nanocomposite-based nerve conduits and their subsequent implantation in a rat sciatic nerve injury model for peripheral nerve regeneration. This is the first in vivo study of polyaniline-based nerve conduits describing the safety and efficacy of the conduits in treating peripheral nerve injuries. The nanocomposite was synthesized by electrospinning a mixture of silk fibroin protein and polyaniline wherein the silk nanofibers were observed to be uniformly coated with polyaniline nanoparticles. Tubular shaped nerve conduits were subsequently formed by multiple rolling of the electrospun sheet over a stainless steel mandrel. The conduits were characterized in vitro for their physico-chemical properties as well as their compatibility with rat Schwann cells. Upon implantation in a 10 mm sciatic nerve injury model, the conduits were evaluated for their neuro-regenerative potential through extensive electrophysiological studies and monitoring of gait pattern over a course of 12 months. Gross examination, histological and ultra-structure analyses of the conduits and the regenerated nerve were also performed to evaluate morphological regeneration of transected nerve. PASF nanocomposite conduits seeded with Schwann cell (cell seeded PASF) exhibited excellent nerve conduction velocity (NCV) (50 m s-1), compound muscle action potential (CMAP) (12.8 mV), motor unit potential (MUP) (124 µV), growth of healthy tissue along the nerve gap and thick myelination of axons 12 months after implantation indicating enhanced neuro-regeneration. The excellent functional recovery achieved by animals implanted with cell seeded PASF conduits (86.2% NCV; 80.00% CMAP; 76.07% MUP) are superior to outcomes achieved previously with similar electrically conductive conduits. We believe that the present study would encourage further research in developing electrically active neural implants using synthetic conducting polymers and the in vivo applications of the same.


Subject(s)
Aniline Compounds , Nerve Regeneration , Peripheral Nerve Injuries/therapy , Sciatic Nerve/injuries , Sciatic Neuropathy/therapy , Silk , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cell Line , Disease Models, Animal , Female , Fibroins , Materials Testing , Nanocomposites/chemistry , Nanocomposites/toxicity , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/physiopathology , Rats , Rats, Sprague-Dawley , Schwann Cells/cytology , Schwann Cells/drug effects , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Sciatic Neuropathy/pathology , Sciatic Neuropathy/physiopathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Scaffolds/chemistry
4.
Data Brief ; 4: 315-21, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217808

ABSTRACT

In the present data article we report the in vitro and in vivo biocompatibility of fabricated nerve conduits described in Das et al. [1]. Green synthesised gold nanoparticles (GNPs) were evaluated for their cytotoxicity in rat Schwann cells (SCTM41). We also describe herein the adhesion and proliferation of Schwann cells over the nanofibrous scaffolds. Methods describing surgical implantation of conduits in a rat sciatic nerve injury model, confirming its accurate implantation as well as the porosity and swelling tendency of the nerve conduits are illustrated in the various figures and graphs.

5.
Biomaterials ; 62: 66-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26026910

ABSTRACT

We report a novel silk-gold nanocomposite based nerve conduit successfully tested in a neurotmesis grade sciatic nerve injury model in rats over a period of eighteen months. The conduit was fabricated by adsorbing gold nanoparticles onto silk fibres and transforming them into a nanocomposite sheet by electrospinning which is finally given a tubular structure by rolling on a stainless steel mandrel of chosen diameter. The conduits were found to promote adhesion and proliferation of Schwann cells in vitro and did not elicit any toxic or immunogenic responses in vivo. We also report for the first time, the monitoring of muscular regeneration post nerve conduit implantation by recording motor unit potentials (MUPs) through needle electromyogram. Pre-seeding the conduits with Schwann cells enhanced myelination of the regenerated tissue. Histo-morphometric and electrophysiological studies proved that the nanocomposite based conduits pre-seeded with Schwann cells performed best in terms of structural and functional regeneration of severed sciatic nerves. The near normal values of nerve conduction velocity (50 m/sec), compound muscle action potential (29.7 mV) and motor unit potential (133 µV) exhibited by the animals implanted with Schwann cell loaded nerve conduits in the present study are superior to those observed in previous reports with synthetic materials as well as collagen based nerve conduits. Animals in this group were also able to perform complex locomotory activities like stretching and jumping with excellent sciatic function index (SFI) and led a normal life.


Subject(s)
Guided Tissue Regeneration/instrumentation , Nanocomposites/chemistry , Nerve Regeneration/physiology , Peripheral Nerve Injuries/physiopathology , Peripheral Nerve Injuries/therapy , Silk/chemistry , Equipment Design , Equipment Failure Analysis , Gold/chemistry , Materials Testing , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanocomposites/ultrastructure , Neural Conduction/physiology , Peripheral Nerve Injuries/diagnosis , Recovery of Function/physiology , Schwann Cells/physiology , Schwann Cells/transplantation , Silk/ultrastructure , Tissue Scaffolds , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...