Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(25): 22382-22405, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396274

ABSTRACT

Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.

2.
Dalton Trans ; 50(42): 15287-15295, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34636374

ABSTRACT

This work explores the position of the hydroxyl moiety and its participation in intramolecular H-bonding towards dictating the fluoride selective colorimetric response in functionalized thiourea derivatives. The study reveals the pivotal aspect of the hydroxyl moiety in C2 towards attaining selectivity for fluoride over acetate and dihydrogenphosphate ion. Furthermore, a methodology employing stabilization of deprotonated thiourea through metal ion (Ni2+ and Cu2+) coordination is proposed for the colorimetric sensing of fluoride in water medium. The mechanism of interaction is thoroughly studied by UV-Vis, 1H NMR, ESR spectroscopy, electrochemical techniques and further validated by DFT calculations. This study reveals the formation of an in situ Ni2+ complex that shows greater stability in aqueous medium. The methodology is applied in the detection of fluoride in groundwater samples.

3.
Phys Chem Chem Phys ; 23(1): 204-210, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33320127

ABSTRACT

A density functional theory study has been performed to investigate cation-doped Sn2O4 clusters for selective catalytic reduction of CO2. We study the influence of Si and Ti dopants on the height of the H2 dissociation barrier for the doped systems, and then the subsequent mechanism for the conversion of CO2 into formic acid (FA) via a hydride pinning pathway. The lowest barrier height for H2 dissociation is observed across the 'Ti-O' bond of the Ti-doped Sn2O4 cluster, with a negatively charged hydride (Ti-H) formed during the heterolytic H2 dissociation, bringing selectivity towards the desired FA product. The formation of a formate intermediate is identified as the rate-determining step (RDS) for the whole pathway, but the barrier height is substantially reduced for the Ti-doped system when compared to the same steps on the undoped Sn2O4 cluster. The free energy of formate formation in the RDS is calculated to be negative, which reveals that the hydride transfer would occur spontaneously. Overall, our results show that the small-sized Ti-doped Sn2O4 clusters exhibit better catalytic activity than undoped clusters in the important process of reducing CO2 to FA when proceeding via the hydride pinning pathway.

4.
J Nanosci Nanotechnol ; 20(8): 5153-5161, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32126716

ABSTRACT

Tin dioxide nanoclusters are very effective as catalysts for various reactions including CO2 conversion and Friedel-Crafts acylation for pharmaceuticals. The nanoarchitectonics of SnO2 could be controlled by different synthetic strategies. In the current article, we have presented synthesis of SnO2 nanoclusters and their applications in catalysis. We have also reviewed computational studies on SnO2 nanoclusters for using them in nanoarchitectonics and catalytic conversion of CO2 to useful chemicals. Optimized structures of various cluster sizes are presented. The present and future perspectives of SnO2 catalysts in biomass conversions are also given.

SELECTION OF CITATIONS
SEARCH DETAIL
...