Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 136: 112406, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850795

ABSTRACT

Tumor-associated macrophages (TAMs) exert profound influences on cancer progression, orchestrating a dynamic interplay within the tumor microenvironment. Recent attention has focused on the role of TAM-derived exosomes, small extracellular vesicles containing bioactive molecules, in mediating this intricate communication. This review comprehensively synthesizes current knowledge, emphasizing the diverse functions of TAM-derived exosomes across various cancer types. The review delves into the impact of TAM-derived exosomes on fundamental cancer hallmarks, elucidating their involvement in promoting cancer cell proliferation, migration, invasion, and apoptosis evasion. By dissecting the molecular cargo encapsulated within these exosomes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and proteins, the review uncovers key regulatory mechanisms governing these effects. Noteworthy miRNAs, such as miR-155, miR-196a-5p, and miR-221-3p, are highlighted for their pivotal roles in mediating TAM-derived exosomal communication and influencing downstream targets. Moreover, the review explores the impact of TAM-derived exosomes on the immune microenvironment, particularly their ability to modulate immune cell function and foster immune evasion. The discussion encompasses the regulation of programmed cell death ligand 1 (PD-L1) expression and subsequent impairment of CD8 + T cell activity, unraveling the immunosuppressive effects of TAM-derived exosomes. With an eye toward clinical implications, the review underscores the potential of TAM-derived exosomes as diagnostic markers and therapeutic targets. Their involvement in cancer progression, metastasis, and therapy resistance positions TAM-derived exosomes as key players in reshaping treatment strategies. Finally, the review outlines future directions, proposing avenues for targeted therapies aimed at disrupting TAM-derived exosomal functions and redefining the tumor microenvironment.


Subject(s)
Exosomes , Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Exosomes/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Curr Mol Med ; 2024 01 26.
Article in English | MEDLINE | ID: mdl-38288828

ABSTRACT

Triple-negative breast cancer (TNBC) presents considerable obstacles because of its highly aggressive characteristics and limited availability of specific therapeutic interventions. The utilization of monoclonal antibody (mAb)-based immunotherapy is a viable approach to tackle these difficulties. This review aims to examine the present state of mAb-based immunotherapy in TNBC, focusing on the underlying mechanisms of action, clinical applications, and existing challenges. The effectiveness of mAbs in reducing tumor development, regulating immune responses, and changing the tumor microenvironment has been demonstrated in many clinical investigations. The challenges encompass several aspects such as the discovery of biomarkers, understanding resistance mechanisms, managing toxicity, considering costs, and ensuring accessibility. The future is poised to bring forth significant advancements in the field of biomedicine, particularly in the areas of new mAbs, personalized medicine, and precision immunotherapy. In conclusion, mAb-based immunotherapy has promise in revolutionizing the treatment of TNBC, hence providing a possible avenue for enhanced patient outcomes and quality of life.

SELECTION OF CITATIONS
SEARCH DETAIL
...