Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Genome Biol Evol ; 16(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302106

ABSTRACT

Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.


Subject(s)
HLA-DQ Antigens , Polymorphism, Single Nucleotide , Gene Frequency , Linkage Disequilibrium , Bayes Theorem , Haplotypes , HLA-DQ Antigens/genetics
2.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Article in English | MEDLINE | ID: mdl-35065284

ABSTRACT

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Subject(s)
Exome , Pathology, Molecular , Child , Exome/genetics , Humans , Mutation , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing/methods
3.
Genet Med ; 24(4): 924-930, 2022 04.
Article in English | MEDLINE | ID: mdl-34955381

ABSTRACT

PURPOSE: According to the American College of Medical Genetics and Genomics/Association of Medical Pathology (ACMG/AMP) guidelines, in silico evidence is applied at the supporting strength level for pathogenic (PP3) and benign (BP4) evidence. Although PP3 is commonly used, less is known about the effect of these criteria on variant classification outcomes. METHODS: A total of 727 missense variants curated by Clinical Genome Resource expert groups were analyzed to determine how often PP3 and BP4 were applied and their impact on variant classification. The ACMG/AMP categorical system of variant classification was compared with a quantitative point-based system. The pathogenicity likelihood ratios of REVEL, VEST, FATHMM, and MPC were calibrated using a gold standard set of 237 pathogenic and benign variants (classified independent of the PP3/BP4 criteria). RESULTS: The PP3 and BP4 criteria were applied by Variant Curation Expert Panels to 55% of missense variants. Application of those criteria changed the classification of 15% of missense variants for which either criterion was applied. The point-based system resolved borderline classifications. REVEL and VEST performed best at a strength level consistent with moderate evidence. CONCLUSION: We show that in silico criteria are commonly applied and often affect the final variant classifications. When appropriate thresholds for in silico predictors are established, our results show that PP3 and BP4 can be used at a moderate strength.


Subject(s)
Genetic Variation , Genome, Human , Humans , Genetic Testing/methods , Genetic Variation/genetics , Genomics/methods
4.
NAR Genom Bioinform ; 2(2): lqaa032, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32500119

ABSTRACT

Human Phenotype Ontology (HPO) terms are increasingly used in diagnostic settings to aid in the characterization of patient phenotypes. The HPO annotation database is updated frequently and can provide detailed phenotype knowledge on various human diseases, and many HPO terms are now mapped to candidate causal genes with binary relationships. To further improve the genetic diagnosis of rare diseases, we incorporated these HPO annotations, gene-disease databases and gene-gene databases in a probabilistic model to build a novel HPO-driven gene prioritization tool, Phen2Gene. Phen2Gene accesses a database built upon this information called the HPO2Gene Knowledgebase (H2GKB), which provides weighted and ranked gene lists for every HPO term. Phen2Gene is then able to access the H2GKB for patient-specific lists of HPO terms or PhenoPacket descriptions supported by GA4GH (http://phenopackets.org/), calculate a prioritized gene list based on a probabilistic model and output gene-disease relationships with great accuracy. Phen2Gene outperforms existing gene prioritization tools in speed and acts as a real-time phenotype-driven gene prioritization tool to aid the clinical diagnosis of rare undiagnosed diseases. In addition to a command line tool released under the MIT license (https://github.com/WGLab/Phen2Gene), we also developed a web server and web service (https://phen2gene.wglab.org/) for running the tool via web interface or RESTful API queries. Finally, we have curated a large amount of benchmarking data for phenotype-to-gene tools involving 197 patients across 76 scientific articles and 85 patients' de-identified HPO term data from the Children's Hospital of Philadelphia.

5.
Bioinformatics ; 36(15): 4353-4356, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32484858

ABSTRACT

SUMMARY: A number of methods have been devised to address the need for targeted genomic resequencing. One of these methods, region-specific extraction (RSE) is characterized by the capture of long DNA fragments (15-20 kb) by magnetic beads, after enzymatic extension of oligonucleotides hybridized to selected genomic regions. Facilitating the selection of the most appropriate capture oligos for targeting a region of interest, satisfying the properties of temperature (Tm) and entropy (ΔG), while minimizing the formation of primer-dimers in a pooled experiment, is therefore necessary. Manual design and selection of oligos becomes very challenging, complicated by factors such as length of the target region and number of targeted regions. Here we describe, AnthOligo, a web-based application developed to optimally automate the process of generation of oligo sequences used to target and capture the continuum of large and complex genomic regions. Apart from generating oligos for RSE, this program may have wider applications in the design of customizable internal oligos to be used as baits for gene panel analysis or even probes for large-scale comparative genomic hybridization array processes. AnthOligo was tested by capturing the Major Histocompatibility Complex (MHC) of a random sample.The application provides users with a simple interface to upload an input file in BED format and customize parameters for each task. The task of probe design in AnthOligo commences when a user uploads an input file and concludes with the generation of a result-set containing an optimal set of region-specific oligos. AnthOligo is currently available as a public web application with URL: http://antholigo.chop.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Genomics , Comparative Genomic Hybridization , Major Histocompatibility Complex , Oligonucleotides/genetics
6.
Hum Immunol ; 81(8): 413-422, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32595056

ABSTRACT

The comprehensive characterization of human leukocyte antigen (HLA) genomic sequences remains a challenging problem. Despite the significant advantages of next-generation sequencing (NGS) in the field of Immunogenetics, there has yet to be a single solution for unambiguous, accurate, simple, cost-effective, and timely genotyping necessary for all clinical applications. This report demonstrates the benefits of nanopore sequencing introduced by Oxford Nanopore Technologies (ONT) for HLA genotyping. Samples (n = 120) previously characterized at high-resolution three-field (HR-3F) for 11 loci were assessed using ONT sequencing paired to a single-plex PCR protocol (Holotype) and to two multiplex protocols OmniType (Omixon) and NGSgo®-MX6-1 (GenDx). The results demonstrate the potential of nanopore sequencing for delivering accurate HR-3F typing with a simple, rapid, and cost-effective protocol. The protocol is applicable to time-sensitive applications, such as deceased donor typings, enabling better assessments of compatibility and epitope analysis. The technology also allows significantly shorter turnaround time for multiple samples at a lower cost. Overall, the nanopore technology appears to offer a significant advancement over current next-generation sequencing platforms as a single solution for all HLA genotyping needs.


Subject(s)
Genotyping Techniques/methods , HLA Antigens/genetics , Nanopore Sequencing/methods , Alleles , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Testing/methods , Humans , Sequence Analysis, DNA/methods , Tissue Donors
7.
Genet Med ; 22(5): 927-936, 2020 05.
Article in English | MEDLINE | ID: mdl-31911672

ABSTRACT

PURPOSE: Neurodevelopmental disorders represent a frequent indication for clinical exome sequencing. Fifty percent of cases, however, remain undiagnosed even upon exome reanalysis. Here we show RNA sequencing (RNA-seq) on human B-lymphoblastoid cell lines (LCL) is highly suitable for neurodevelopmental Mendelian gene testing and demonstrate the utility of this approach in suspected cases of Cornelia de Lange syndrome (CdLS). METHODS: Genotype-Tissue Expression project transcriptome data for LCL, blood, and brain were assessed for neurodevelopmental Mendelian gene expression. Detection of abnormal splicing and pathogenic variants in these genes was performed with a novel RNA-seq diagnostic pipeline and using a validation CdLS-LCL cohort (n = 10) and test cohort of patients who carry a clinical diagnosis of CdLS but negative genetic testing (n = 5). RESULTS: LCLs share isoform diversity of brain tissue for a large subset of neurodevelopmental genes and express 1.8-fold more of these genes compared with blood (LCL, n = 1706; whole blood, n = 917). This enables testing of more than 1000 genetic syndromes. The RNA-seq pipeline had 90% sensitivity for detecting pathogenic events and revealed novel diagnoses such as abnormal splice products in NIPBL and pathogenic coding variants in BRD4 and ANKRD11. CONCLUSION: The LCL transcriptome enables robust frontline and/or reflexive diagnostic testing for neurodevelopmental disorders.


Subject(s)
De Lange Syndrome , Neurodevelopmental Disorders , Cell Cycle Proteins/genetics , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , Humans , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Nuclear Proteins , Phenotype , Sequence Analysis, RNA , Transcription Factors
8.
Clin Chem ; 66(1): 239-246, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31672855

ABSTRACT

BACKGROUND: Molecular profiling has become essential for tumor risk stratification and treatment selection. However, cancer genome complexity and technical artifacts make identification of real variants a challenge. Currently, clinical laboratories rely on manual screening, which is costly, subjective, and not scalable. We present a machine learning-based method to distinguish artifacts from bona fide single-nucleotide variants (SNVs) detected by next-generation sequencing from nonformalin-fixed paraffin-embedded tumor specimens. METHODS: A cohort of 11278 SNVs identified through clinical sequencing of tumor specimens was collected and divided into training, validation, and test sets. Each SNV was manually inspected and labeled as either real or artifact as part of clinical laboratory workflow. A 3-class (real, artifact, and uncertain) model was developed on the training set, fine-tuned with the validation set, and then evaluated on the test set. Prediction intervals reflecting the certainty of the classifications were derived during the process to label "uncertain" variants. RESULTS: The optimized classifier demonstrated 100% specificity and 97% sensitivity over 5587 SNVs of the test set. Overall, 1252 of 1341 true-positive variants were identified as real, 4143 of 4246 false-positive calls were deemed artifacts, whereas only 192 (3.4%) SNVs were labeled as "uncertain," with zero misclassification between the true positives and artifacts in the test set. CONCLUSIONS: We presented a computational classifier to identify variant artifacts detected from tumor sequencing. Overall, 96.6% of the SNVs received definitive labels and thus were exempt from manual review. This framework could improve quality and efficiency of the variant review process in clinical laboratories.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Machine Learning , False Positive Reactions , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Polymorphism, Single Nucleotide , Sensitivity and Specificity
9.
Cancer Genet ; 235-236: 1-12, 2019 06.
Article in English | MEDLINE | ID: mdl-31296308

ABSTRACT

Identifying genetic biomarkers of patient survival remains a major goal of large-scale cancer profiling studies. Using gene expression data to predict the outcome of a patient's tumor makes biomarker discovery a compelling tool for improving patient care. As genomic technologies expand, multiple data types may serve as informative biomarkers, and bioinformatic strategies have evolved around these different applications. For categorical variables such as a gene's mutation status, biomarker identification to predict survival time is straightforward. However, for continuous variables like gene expression, the available methods generate highly-variable results, and studies on best practices are lacking. We investigated the performance of eight methods that deal specifically with continuous data. K-means, Cox regression, concordance index, D-index, 25th-75th percentile split, median-split, distribution-based splitting, and KaplanScan were applied to four RNA-sequencing (RNA-seq) datasets from the Cancer Genome Atlas. The reliability of the eight methods was assessed by splitting each dataset into two groups and comparing the overlap of the results. Gene sets that had been identified from the literature for a specific tumor type served as positive controls to assess the accuracy of each biomarker using receiver operating characteristic (ROC) curves. Artificial RNA-Seq data were generated to test the robustness of these methods under fixed levels of gene expression noise. Our results show that methods based on dichotomizing tend to have consistently poor performance while C-index, D-index, and k-means perform well in most settings. Overall, the Cox regression method had the strongest performance based on tests of accuracy, reliability, and robustness.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , Neoplasms/mortality , Base Sequence , Biomarkers, Tumor/genetics , Data Interpretation, Statistical , Humans , Kaplan-Meier Estimate , Prognosis , Proportional Hazards Models , ROC Curve , Sequence Analysis, RNA/methods , Survival Analysis
10.
Genome Res ; 29(7): 1144-1151, 2019 07.
Article in English | MEDLINE | ID: mdl-31235655

ABSTRACT

Recent advances in DNA sequencing have expanded our understanding of the molecular basis of genetic disorders and increased the utilization of clinical genomic tests. Given the paucity of evidence to accurately classify each variant and the difficulty of experimentally evaluating its clinical significance, a large number of variants generated by clinical tests are reported as variants of unknown clinical significance. Population-scale variant databases can improve clinical interpretation. Specifically, pathogenicity prediction for novel missense variants can use features describing regional variant constraint. Constrained genomic regions are those that have an unusually low variant count in the general population. Computational methods have been introduced to capture these regions and incorporate them into pathogenicity classifiers, but these methods have yet to be compared on an independent clinical variant data set. Here, we introduce one variant data set derived from clinical sequencing panels and use it to compare the ability of different genomic constraint metrics to determine missense variant pathogenicity. This data set is compiled from 17,071 patients surveyed with clinical genomic sequencing for cardiomyopathy, epilepsy, or RASopathies. We further use this data set to demonstrate the necessity of disease-specific classifiers and to train PathoPredictor, a disease-specific ensemble classifier of pathogenicity based on regional constraint and variant-level features. PathoPredictor achieves an average precision >90% for variants from all 99 tested disease genes while approaching 100% accuracy for some genes. The accumulation of larger clinical variant training data sets can significantly enhance their performance in a disease- and gene-specific manner.


Subject(s)
Cardiomyopathies/genetics , Datasets as Topic , Epilepsy/genetics , Genetic Variation , ras Proteins/genetics , Humans , Mutation, Missense
11.
Genome Med ; 11(1): 32, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31133068

ABSTRACT

BACKGROUND: Somatic genetic testing is rapidly becoming the standard of care in many adult and pediatric cancers. Previously, the standard approach was single-gene or focused multigene testing, but many centers have moved towards broad-based next-generation sequencing (NGS) panels. Here, we report the laboratory validation and clinical utility of a large cohort of clinical NGS somatic sequencing results in diagnosis, prognosis, and treatment of a wide range of pediatric cancers. METHODS: Subjects were accrued retrospectively at a single pediatric quaternary-care hospital. Sequence analyses were performed on 367 pediatric cancer samples using custom-designed NGS panels over a 15-month period. Cases were profiled for mutations, copy number variations, and fusions identified through sequencing, and their clinical impact on diagnosis, prognosis, and therapy was assessed. RESULTS: NGS panel testing was incorporated meaningfully into clinical care in 88.7% of leukemia/lymphomas, 90.6% of central nervous system (CNS) tumors, and 62.6% of non-CNS solid tumors included in this cohort. A change in diagnosis as a result of testing occurred in 3.3% of cases. Additionally, 19.4% of all patients had variants requiring further evaluation for potential germline alteration. CONCLUSIONS: Use of somatic NGS panel testing resulted in a significant impact on clinical care, including diagnosis, prognosis, and treatment planning in 78.7% of pediatric patients tested in our institution. Somatic NGS tumor testing should be implemented as part of the routine diagnostic workup of newly diagnosed and relapsed pediatric cancer patients.


Subject(s)
DNA, Neoplasm/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/diagnosis , Sequence Analysis, DNA/methods , Child , DNA, Neoplasm/chemistry , Genetic Testing/standards , High-Throughput Nucleotide Sequencing/standards , Humans , Neoplasms/genetics , Sequence Analysis, DNA/standards
12.
JAMA Netw Open ; 2(4): e192129, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30977854

ABSTRACT

Importance: Although genetic testing is important for bringing precision medicine to children with epilepsy, it is unclear what genetic testing strategy is best in maximizing diagnostic yield. Objectives: To evaluate the diagnostic yield of an exome-based gene panel for childhood epilepsy and discuss the value of follow-up testing. Design, Setting, and Participants: A case series study was conducted on data from clinical genetic testing at Children's Hospital of Philadelphia was conducted from September 26, 2016, to January 8, 2018. Initial testing targeted 100 curated epilepsy genes for sequence and copy number analysis in 151 children with idiopathic epilepsy referred consecutively by neurologists. Additional genetic testing options were offered afterward. Exposures: Clinical genetic testing. Main Outcomes and Measures: Molecular diagnostic findings. Results: Of 151 patients (84 boys [55.6%]; median age, 4.2 years [interquartile range, 1.4-8.7 years]), 16 children (10.6%; 95% CI, 6%-16%) received a diagnosis after initial panel analysis. Parental testing for 15 probands with inconclusive results revealed de novo variants in 7 individuals (46.7%), resulting in an overall diagnostic yield of 15.3% (23 of 151; 95% CI, 9%-21%). Twelve probands with nondiagnostic panel findings were reflexed to exome sequencing, and 4 were diagnostic (33.3%; 95% CI, 6%-61%), raising the overall diagnostic yield to 17.9% (27 of 151; 95% CI, 12%-24%). The yield was highest (17 of 44 [38.6%; 95% CI, 24%-53%]) among probands with epilepsy onset in infancy (age, 1-12 months). Panel diagnostic findings involved 16 genes: SCN1A (n = 4), PRRT2 (n = 3), STXBP1 (n = 2), IQSEC2 (n = 2), ATP1A2, ATP1A3, CACNA1A, GABRA1, KCNQ2, KCNT1, SCN2A, SCN8A, DEPDC5, TPP1, PCDH19, and UBE3A (all n = 1). Exome sequencing analysis identified 4 genes: SMC1A, SETBP1, NR2F1, and TRIT1. For the remaining 124 patients, analysis of 13 additional genes implicated in epilepsy since the panel was launched in 2016 revealed promising findings in 6 patients. Conclusions and Relevance: Exome-based targeted panels appear to enable rapid analysis of a preselected set of genes while retaining flexibility in gene content. Successive genetic workup should include parental testing of select probands with inconclusive results and reflex to whole-exome trio analysis for the remaining nondiagnostic cases. Periodic reanalysis is needed to capture information in newly identified disease genes.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Exome Sequencing/methods , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Child , Child, Preschool , Female , Humans , Infant , Male , Tripeptidyl-Peptidase 1
13.
Eur J Hum Genet ; 27(4): 612-620, 2019 04.
Article in English | MEDLINE | ID: mdl-30626929

ABSTRACT

Clinical exome sequencing (CES) has become the preferred diagnostic platform for complex pediatric disorders with suspected monogenic etiologies. Despite rapid advancements, the major challenge still resides in identifying the casual variants among the thousands of variants detected during CES testing, and thus establishing a molecular diagnosis. To improve the clinical exome diagnostic efficiency, we developed Phenoxome, a robust phenotype-driven model that adopts a network-based approach to facilitate automated variant prioritization. Phenoxome dissects the phenotypic manifestation of a patient in concert with their genomic profile to filter and then prioritize variants that are likely to affect the function of the gene (potentially pathogenic variants). To validate our method, we have compiled a clinical cohort of 105 positive patient samples that represent a wide range of genetic heterogeneity. Phenoxome identifies the causative variants within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of these exomes, respectively. Furthermore, we show that our method is optimized for clinical testing by outperforming the current state-of-art method. We have demonstrated the performance of Phenoxome using a clinical cohort and showed that it enables rapid and accurate interpretation of clinical exomes. Phenoxome is available at https://phenoxome.chop.edu/ .


Subject(s)
Exome Sequencing/statistics & numerical data , Exome/genetics , Genetic Heterogeneity , Software , Computational Biology , Databases, Genetic , Humans
14.
Hum Mutat ; 40(3): 243-257, 2019 03.
Article in English | MEDLINE | ID: mdl-30582250

ABSTRACT

The PCDH19 gene consists of six exons encoding a 1,148 amino acid transmembrane protein, Protocadherin 19, which is involved in brain development. Heterozygous pathogenic variants in this gene are inherited in an unusual X-linked dominant pattern in which heterozygous females are affected, while hemizygous males are typically unaffected, although they pass on the pathogenic variant to each affected daughter. PCDH19-related disorder is known to cause early-onset epilepsy in females characterized by seizure clusters exacerbated by fever and in most cases, onset is within the first year of life. This condition was initially described in 1971 and in 2008 PCDH19 was identified as the underlying genetic etiology. This condition is the result of pathogenic loss-of-function variants that may be de novo or inherited from an affected mother or unaffected father and cellular interference has been hypothesized to be the culprit. Heterozygous females are symptomatic because of the presence of both wild-type and mutant cells that interfere with one another due to the production of different surface proteins, whereas nonmosaic hemizygous males produce a homogenous population of cells. Here, we review novel pathogenic variants in the PCDH19 gene since 2012 to date, and summarize any genotype-phenotype correlations.


Subject(s)
Cadherins/genetics , Epilepsy/genetics , Mutation/genetics , Age of Onset , Exons/genetics , Female , Genetic Association Studies , Humans , Male , Protocadherins
15.
J Mol Diagn ; 21(1): 38-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30577886

ABSTRACT

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.


Subject(s)
Exome Sequencing/methods , DNA/genetics , Exome , Female , Genetic Testing/methods , Genetic Variation , Humans , Male
18.
Genet Med ; 20(12): 1663-1676, 2018 12.
Article in English | MEDLINE | ID: mdl-29907799

ABSTRACT

PURPOSE: Hearing loss (HL) is the most common sensory disorder in children. Prompt molecular diagnosis may guide screening and management, especially in syndromic cases when HL is the single presenting feature. Exome sequencing (ES) is an appealing diagnostic tool for HL as the genetic causes are highly heterogeneous. METHODS: ES was performed on a prospective cohort of 43 probands with HL. Sequence data were analyzed for primary and secondary findings. Capture and coverage analysis was performed for genes and variants associated with HL. RESULTS: The diagnostic rate using ES was 37.2%, compared with 15.8% for the clinical HL panel. Secondary findings were discovered in three patients. For 247 genes associated with HL, 94.7% of the exons were targeted for capture and 81.7% of these exons were covered at 20× or greater. Further analysis of 454 randomly selected HL-associated variants showed that 89% were targeted for capture and 75% were covered at a read depth of at least 20×. CONCLUSION: ES has an improved yield compared with clinical testing and may capture diagnoses not initially considered due to subtle clinical phenotypes. Technical challenges were identified, including inadequate capture and coverage of HL genes. Additional considerations of ES include secondary findings, cost, and turnaround time.


Subject(s)
Exome Sequencing , Hearing Loss/genetics , High-Throughput Nucleotide Sequencing , Pathology, Molecular , Child, Preschool , Exome/genetics , Female , Hearing Loss/diagnosis , Hearing Loss/pathology , Humans , Infant , Infant, Newborn , Male , Mutation , Phenotype
19.
J Mol Diagn ; 20(5): 643-652, 2018 09.
Article in English | MEDLINE | ID: mdl-29936260

ABSTRACT

Exome-based panels are becoming the preferred diagnostic strategy in clinical laboratories. This approach enables dynamic gene content update and, if needed, cost-effective reflex to whole-exome sequencing. Currently, no guidelines or appropriate resources are available to support the clinical implementation of exome-based panels. Here, we highlight principles and important considerations for the clinical development and validation of exome-based panels. In addition, we developed ExomeSlicer, a novel, web-based resource, which uses empirical exon-level next-generation sequencing quality metrics to predict and visualize technically challenging exome-wide regions in any gene or genes of interest. Exome sequencing data from 100 clinical epilepsy cases were used to illustrate the clinical utility of ExomeSlicer in predicting poor-quality regions and its impact on streamlining the ad hoc Sanger sequencing fill in burden. With the use of ExomeSlicer, >2100 low complexity and/or high-homology regions affecting >1615 genes across the exome were also characterized. These regions can be a source of false-positive or false-negative variant calls, which can lead to misdiagnoses in tested patients and/or inaccurate functional annotations. We provide important considerations and a novel resource for the clinical development of exome-based panels.


Subject(s)
Epilepsy/genetics , Exome/genetics , Software , Exons/genetics , Humans , Sequence Analysis, DNA
20.
Genet Med ; 20(12): 1600-1608, 2018 12.
Article in English | MEDLINE | ID: mdl-29595809

ABSTRACT

PURPOSE: Hereditary hearing loss is highly heterogeneous. To keep up with rapidly emerging disease-causing genes, we developed the AUDIOME test for nonsyndromic hearing loss (NSHL) using an exome sequencing (ES) platform and targeted analysis for the curated genes. METHODS: A tiered strategy was implemented for this test. Tier 1 includes combined Sanger and targeted deletion analyses of the two most common NSHL genes and two mitochondrial genes. Nondiagnostic tier 1 cases are subjected to ES and array followed by targeted analysis of the remaining AUDIOME genes. RESULTS: ES resulted in good coverage of the selected genes with 98.24% of targeted bases at >15 ×. A fill-in strategy was developed for the poorly covered regions, which generally fell within GC-rich or highly homologous regions. Prospective testing of 33 patients with NSHL revealed a diagnosis in 11 (33%) and a possible diagnosis in 8 cases (24.2%). Among those, 10 individuals had variants in tier 1 genes. The ES data in the remaining nondiagnostic cases are readily available for further analysis. CONCLUSION: The tiered and ES-based test provides an efficient and cost-effective diagnostic strategy for NSHL, with the potential to reflex to full exome to identify causal changes outside of the AUDIOME test.


Subject(s)
Genetic Predisposition to Disease , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Pathology, Molecular , Exome/genetics , Female , Hearing Loss, Sensorineural/physiopathology , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...