Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(4): 1450-1459, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37488816

ABSTRACT

Starch is a semi-crystalline macromolecule with the presence of amorphous and crystalline components. The amorphous amylose and crystalline amylopectin regions in starch granules are susceptible to certain physical modifications, such as gamma irradiation. Polarization-resolved second harmonic generation (P-SHG) microscopy in conjunction with SHG-circular dichroism (CD) was used to assess the three-dimensional molecular order and inherent chirality of starch granules and their reaction to different dosages of gamma irradiation. For the first time, the relationship between starch achirality (χ21/χ16 and χ22/χ16) and chirality (χ14/χ16) determining susceptibility tensor ratios has been elucidated. The results showed that changes in the structure and orientation of long-chain amylopectin were supported by the decrease in the SHG anisotropy factor and the χ22/χ16 ratio. Furthermore, SHG-CD illustrated the molecular tilt angle by revealing the arrangement of amylopectin molecules pointing either upward or downward owing to molecular polarity.


Subject(s)
Amylopectin , Second Harmonic Generation Microscopy , Starch
2.
Curr Opin Plant Biol ; 73: 102348, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36842412

ABSTRACT

Acylsugars constitute a diverse class of secondary metabolites found in many flowering plant families. Comprising sugar cores and acyl groups connected by ester and/or ether linkages, acylsugar structures vary considerably at all taxonomic levels - from populations of the same species to across species of the same family and across flowering plants, with some species producing hundreds of acylsugars in a single organ. Acylsugars have been most well-studied in the Solanaceae family, but structurally analogous compounds have also been reported in the Convolvulaceae, Martyniaceae, Geraniaceae, Rubiaceae, Rosaceae and Caryophyllaceae families. Focusing on Solanaceae and Convolvulaceae acylsugars, this review highlights their structural diversity, the potential biosynthetic mechanisms that produce this diversity, and its functional significance. Finally, we also discuss the possibility that some of this diversity is merely "noise", arising out of enzyme promiscuity and/or non-adaptive evolutionary mechanisms.


Subject(s)
Magnoliopsida , Sugars , Sugars/metabolism , Magnoliopsida/metabolism , Biological Evolution
3.
Sci Rep ; 12(1): 13409, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927308

ABSTRACT

Diapeutics gene markers in colorectal cancer (CRC) can help manage mortality caused by the disease. We applied a game-theoretic link relevance Index (LRI) scoring on the high-throughput whole-genome transcriptome dataset to identify salient genes in CRC and obtained 126 salient genes with LRI score greater than zero. The biomarkers database lacks preliminary information on the salient genes as biomarkers for all the available cancer cell types. The salient genes revealed eleven, one and six overrepresentations for major Biological Processes, Molecular Function, and Cellular components. However, no enrichment with respect to chromosome location was found for the salient genes. Significantly high enrichments were observed for several KEGG, Reactome and PPI terms. The survival analysis of top protein-coding salient genes exhibited superior prognostic characteristics for CRC. MIR143HG, AMOTL1, ACTG2 and other salient genes lack sufficient information regarding their etiological role in CRC. Further investigation in LRI methodology and salient genes to augment the existing knowledge base may create new milestones in CRC diapeutics.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Angiomotins , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/metabolism , Gene Expression Profiling , Humans , Membrane Proteins/metabolism , Prognosis , Survival Analysis , Transcriptome
4.
J Biomol Struct Dyn ; 40(7): 2893-2907, 2022 04.
Article in English | MEDLINE | ID: mdl-33179569

ABSTRACT

A multi-omics-based approach targeting the plant-based natural products from Thumbai (Leucas aspera), an important yet untapped potential source of many therapeutic agents for myriads of immunological conditions and genetic disorders, was conceptualized to reconnoiter its potential biomedical application. A library of 79 compounds from this plant was created, out of which 9 compounds qualified the pharmacokinetics parameters. Reverse pharmacophore technique for target fishing of the screened compounds was executed through which renin receptor (ATP6AP2) and thymidylate kinase (DTYMK) were identified as potential targets. Network biology approaches were used to comprehend and validate the functional, biochemical and clinical relevance of the targets. The target-ligand interaction and subsequent stability parameters at molecular scale were investigated using multiple strategies including molecular modeling, pharmacophore approaches and molecular dynamics simulation. Herein, isololiolide and 4-hydroxy-2-methoxycinnamaldehyde were substantiated as the lead molecules exhibiting comparatively the best binding affinity against the two putative protein targets. These natural lead products from L. aspera and the combinatorial effects may have plausible medical applications in a wide variety of neurodegenerative, genetic and developmental disorders. The lead molecules also exhibit promising alternative in diagnostics and therapeutics through immuno-modulation targeting natural killer T-cell function in transplantation-related pathogenesis, autoimmune and other immunological disorders.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biological Products , Natural Killer T-Cells , Biological Products/pharmacology , Lamiaceae , Molecular Docking Simulation , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...